Translation of Resolution Proofs into Short
First-Order Proofs without Choice Axioms

Hans de Nivelle

Max Planck Institut fiir Informatik
Stuhlsatzenhausweg 85
66123 Saarbriicken, Germany
nivelle@mpi-sb.mpg.de

Abstract. We present a way of transforming a resolution proof contain-
ing Skolemization steps into a natural deduction proof without Skolem-
ization of the same formula. The size of the proof increases only moder-
ately (polynomially). This makes it possible to translate the output of a
resolution theorem prover into a purely first-order proof that is moderate
in size.

If one wants a resolution based theorem prover to generate explicit proofs, one
has to decide what to do with Skolemization. One possibility is to allow Skolem-
ization, (or equivalently the axiom of choice) as a proof principle. In that case,
the resolution proof can be translated more or less one-to-one into a natural de-
duction proof. In [10] it is described how to do this efficiently for the Clausal Nor-
mal Form (CNF) transformation. In [6] and [7], a hybrid method was developed.
For resolution on the clause level, explicit proofs were generated. For the CNF-
transformation, an algorithm was developed inside COQ and proven correct.
Using this approach, explicit generation of proofs for the CNF-transformation
could be avoided. (Although strictly seen, inside COQ, the term defining the
algorithm also defines a proof principle.) A related approach was taken in [14],
using the Boyer-Moore theorem prover instead of COQ. Both approaches use the
axiom of choice. In [6], the axiom of choice was used for proving the clausification
algorithm correct. In [14], a finite domain assumption is used, which implies the
axiom of choice.

Another possibility is to completely eliminate the Skolemization steps from
the proof. If one is interested in correctness only, the axiom of choice is certainly
acceptable, but it is much more elegant to avoid using the axiom of choice in
proofs of first-order formulas. Until now, the only way of eliminating applications
of Skolemization from a proof, were the methods based on Herbrand’s theorem.
As a consequence, these methods can cause a hyperexponential increase in proof
size, see [20] or [18], see also [4]. In [19], such an algorithm is described in detail.
In [13], an improved method is given, which is optimized towards readability of
the resulting proof. This method has been implemented in the omega system by
Andreas Meijer.

In [1], a general method for eliminating Skolem functions from first-order
proofs is given, which results in proofs of polynomial size. The method is based

on internalization of a forcing argument. It assumes that there is a theory strong
enough to encode finite functions. It is not clear whether this method can be ef-
fectively implemented. The problem whether Skolem functions can be efficiently
eliminated from every first-order logic proof seems to be open, see the table in
[8], Page 9.

In this paper, we give a general method for eliminating Skolem functions
from resolution proofs, which can be implemented and expected to be efficient.
Moreover, it is structure-preserving, by which we mean that it does almost not
change the structure of the proof. The main idea is the following: Suppose that
f is a Skolem function in the clausal formula Yz p(z) V ¢(f(x)). Then f can be
replaced by a binary relation F as follows: Vz a F(z,a) — p(z) V g¢(a). If one
makes these replacements in a resolution proof, then the result will be still a
valid first-order proof. The surprising fact is that resolution does not make use
of the functionality of F, only of the seriality. It will turn out that also proofs
containing paramodulation steps can be handled. There is only one restriction on
paramodulation, namely that it has to be simultaneous in the Skolem functions.
Simultaneous in the Skolem functions means that whenever an equality #; & t5
is applied inside a Skolem term, all instances of ¢; that are inside some Skolem
term have to be replaced by t5. The completeness of this restriction follows from
the fact that one does not have to paramodulate at all into Skolem terms for
completeness. This was proven in [5]

1 Preliminaries

Definition 1. We assume a fixed set of predicate symbols P and a fized set of
function symbols F. The sets P and F are assumed disjoint. We assume a fived
function ar, that attaches to each f € F a natural number ar(f) > 0. In addition,
ar attaches to each p € P a natural number ar(p) > 0. We assume that for each
n > 0 there are countably infinitely many elements f € F with ar(f) = n.

Similarly, we assume that for each n > 0, there are countably infinitely many
elements p € P with ar(p) = n.

We assume that there is no syntactic distinction between variables and con-
stants. We call the elements ¢ € F, for which ar(c) = 0, either constants or
variables depending on how they are used.

Definition 2. We recursively define the set of terms. If n > 0, t1,...,t, are
terms, f € F and ar(f) = n, then f(t1,...,t,) is also a term.

Next we define the set of atoms. If n > 0, t1,...,t, are atoms, p € P and
ar(p) = n, then p(t1,...,t,) is an atom. If t1,t> are terms, then t; = ta is an
atom. Formulas are recursively defined as follows:

— If A is an atom, then A is also a formula,
— L and T are formulas,
— if A is a formula, then —A is also a formula,

— if A,B are formulas, then ANB, AV B, A— B, A<+ B are also
formulas,

— if ¢ € F with ar(z) = 0 and A is a formula, then Vo P and 3z P are also
formulas.

For our purpose, it is convenient to define clauses as a subset of formulas:

Definition 3. If A is an atom, then the formulas A and —A are literals. A
literal of form A is called positive. A literal of form —A is called negative.

If Fu,..., F,, are formulas with n > 0, then F1 V ---V F,, simply denotes the
disjunction of Fi,...,F,. In case that n =0, F1V---V F, denotes L.

A clause is a formula of form Vxy---x Ly V---V Ly, in which Ly,..., L,
are literals. We assume that the x; are distinct. The clause is empty if n = 0.

Definition 4. Let S C P U F. For each of the objects defined before (formula,
term, atom, literal, clause), we call it an object over S if it contains only predicate
and function symbols from S.

Since we are going to replace function symbols by relations, we need to formally
define what a relation is.

Definition 5. If F is a formula and x1,. ..,z € F have ar(x;) = 0, then the
expression
R=MXx1 Ay F

is a k-ary relation. We also write ar(R) = k.
Ifty,...,t, are terms, then R(t1,...,t,) denotes the formula

R[xl = tl] [.’L'2 = t2] e [.Z‘k = tk].
The notation [z; := t;] denotes capture avoiding substitution.

The A-symbol will not occur in the proofs that we construct, because relations
will be always instantiated in proofs.
We now define function replacements. In order to define a function replacement,
one needs to specify the function symbols that will be replaced. Terms that
have a such function symbol on top will be replaced by fresh variables. As a
consequence, one also needs to specify a set of fresh variables that will be big
enough.

Definition 6. We write Fpop for the set of function symbols occurring in the
orginal problem (and its proof), which is a subset of F. We assume a subset
Frepl 0f Frrob, specifying the function symbols that will be replaced. Let Fpet
with Fprob N Fpet = D be the set of variables that will be used as definitions. We
use greek letters a, 3,7, to denote elements of Fpet-

The function replacement is a function [] that

— assigns to each f € Frep a relation Ry, s.t. ar(Ry) = ar(f) + 1.
— assigns to each term f(t1,...,t,) with f € Frepl, a unique element o € Fpe.

Definition 7. Let Frept, Foer and [] be defined as in Definition 6. The function
[] is extended to terms over Fpron as follows: The range of extended [] is the
set of terms of terms over (Ferob\Frept) U FDet-

— For a term f(t1,...,tn) with f € Frepl, the replacement [f(t1,...,t,)] is as
defined by Definition 6.
— Foraterm f(t1,...,t,) with f € Fprob\Frepl, the replacement [f(t1,...,tn)]
is defined as f([t1],---,[tn])-
For a quantifier free formula F, we define [F| as the result of replacing each
term t in F' by its corresponding [t].
For a quantifier free formula F, we define

— the set Var(F') as
{a € Fres | ' € F, st.a=[t]}.

These are all the variables of Fper that were involved in defining o subterm
of F (ort).
— the definition set Def(A) as the set

{[fI([t1],---,[tn], @) | @ € Var(4), a=][f(t1,.--,tn)] }

For a term t, the notions Var(t) and Def(t) are defined correspondingly. For
a sequence of quantifier free formulas and terms Uy,...,U, (possibly mized),
we define Var(Uy,...,U,) = Var(Uy) U --- U Var(Uy,,), and Def(Uy,...,U,) =
Var(U;) U - - - U Var(Uy,).

Lemma 1. For each term t' over (Ferob\Frepl) U Fpet, there is exactly one
term t over Fprob, s.t. [t] =t'.

For a variable free formula F, Var(F) and Def(F) depend only on the
terms in F, and not on the formula structure of F. Therefore it is possible to
write Var(F, G) instead of Var(FAG) or Def(ty,t2, F') instead of Def(t1 & toVF),
etc.

Ezample 1. Let F be the atomic formula p(s(f(s(f(0))))). Assume that Frepi =
{f} and [f] = Ry. Further assume that [f(0)] = a, [f(s(f(0)))] = . Then

[s(f(s(f (O] = s(8), [F(s(f(0))] = B,
%(8]1(1”_(03)] = s(a), [F(0)] = e,

Var(F) = {a, 8}. Def(F) = {R;(0,a), Rs(s(a),)}.
We will use the previous definitions to replace a clause
C=Vxy -2y, L1V ---VL,
by
Vay---ap ¥ Var(Ly,...,Ln) \Def(Ly,...,Ly) = [La] V-V [Ly].

We will usually not write the A-symbol. The replacement [] can be chosen
in such a way that it replaces Skolem functions by relations.

Ezample 2. Let C = Yz p(z, f(z)) V ¢(f(f(z)),z) be a clause. Assume that
Frept = {f}, [fl=Ry, [f(z)] =a, and [f(f(z))] = B. Then the translation
of C' equals

Vz Vo Ry(x,a) A Ry(a, B) = p(z,a) V (B,).

It may appear strange that the value of [] depends on the syntactic appearance
of a term. For example, one has [f(z) | = «, [f(y)] = B, while at the same
time, the clauses Yz p(f(z)) and Yy p(f(y)) are a-equivalent.

In fact, one needs to replace the same term by the same variable only within
the same clause. One could define a distinct replacement function [¢ for each
clause C. However, this would only complicate the presentation of translations
in the next section, without introducing more generality.

In practice, if one implements the translation method, it may be impractical
to construct a global replacement function, because it becomes too big.

2 Term Replacement

In this section we explain how paramodulation behaves in combination with
function replacements. The results in this section contain the essence of the
translation method. We define three related concepts, and show that they have
related properties. The concepts are substitutions, generalized substitutions and
systems of equations. A substitution is defined as usual. It assigns terms to
variables. In the context of a function replacement, it has to be extended to the
variables in Fper, which is unproblematic.

A generalized substitution is a set of replacement rules of form ¢ := u, where ¢
and wu are arbitrary terms. When it is applied, every occurrence of t has to be re-
placed by u. Using generalized substitutions, it is possible to define simultaneous
paramodulation. In [12], it was shown that Skolem functions can be eliminated
from resolution proofs all paramodulation steps are simultaneous.

In this paper, we show that it is possible to use a more general form of paramodu-
lation, which we call non-separating paramodulation. In non-separating paramod-
ulation, replacement is controlled by extensions of systems of equations. Roughly
speaking, non-separating paramodulation means that it is not allowed to intro-
duce a distinction between two Skolem terms by equality replacement.

Ezample 3. Consider the equality 0 = 1, and the clause p(f(0),0). Assume that
Frept = {f}, [f] = F, and that [f(0)] = «, [f(1)] = B. The translation of
p(f(0),0) (as a clause) equals

Va F(0,a) = p(a,0).

If one paramodulates from the equallity 0 = 1, one can obtain each of the clauses

p(f(1),0), VB F(1,5) = p(B,0),
p(£(0),1), Va F(0,a) = p(a, 1),
p(f(1),1), VB F(1,8) = p(B,1).

Ezample 4. Now consider the equality f(0) ~ f(1), and the same clause p(f(0),1).
Let Frept and [] be as in the previous example. Then one has:

f(0)~ f(1) Va f F(0,0) = F(1,8) »a~f
p(f(0), £(0)) Va F(0,a) = p(a; @)
p(£(0), £(1)) Va F(0,0) = F(1,5) = p(a,)

and the formulas in the 3d row are derivable other formulas.

The examples show the principle of how paramodulation steps can be recon-
structed after translation by a function replacement. If some term ¢; occurs
inside some literal R, then [¢1] occurs either in [R] or in Def(R), and the replace-
ment can be made there.

Ezample 5. Consider the equality 0 ~ 1, and the clause p(f(0), f(0)). Let [] and
Frept be defined as in the previous example. From Ya F(0,a) — p(a,a) and
0 = 1, one can prove VB F(1,8) — p(8,8), but not Va 8 F(0,a) — F(1,5) —
p(e, B).

The last example shows the major problem when translating arbitrary paramod-
ulation steps. If one wants to replace t; by ¢ inside some atom R, and [t1] occurs
in Def(R), then all subterms that depend on the occurrence [t1] will be automat-
ically modified. Because of this reason, only simultaneous paramodulation was
considered in [12]. In this paper, we show that a weaker restriction of paramod-
ulation will work as well.

We now define both substitutions and generalized substitutions, and how
they are translated by a function replacement [].

Definition 8. A substitution is a set of form © = {zy :=t1,...,xg := tx}, s.t.
(zi, = x4,) = (tiy =ti,)- Each x; is a variable, and each t; is a term.

The application of © on a term t, notation t- 0, is recursively defined as follows
(in the standard way):

— if t equals one of the x;, thent- X =t;.
— Otherwise, write t = f(w1,...,wy). The application f(wy,...,w,) X equals
Flw -2, wn -).

The application of © on a quantifier free formula F is defined term wise.

Definition 9. A generalized substitution is a set of form

Y =A{t1:=u1,...,tr := ug}, s.t. there exist no iy,is with 1 <iy,iy <k, and t;,
is a subterm of t;,. The application of X on a term t, notation t- X, is recursively
defined as follows:

— Ift equals one of the t;, then t - X' = u;.
— Otherwise, writet = f(w1,...,wy). The application f(wy,...,w,) X equals
flw - X, .. wy - X).

The application of X on a quantifier free formula F is defined term wise.

Substitutions and generalized substitutions are closely related. One could say
that substitutions are ’a subclass’ of generalized substitutions. We now define
how a function replacement [] translates a generalized substitution. By ’inheri-
tance’, the translation also applies to simple substitutions.

Definition 10. Let ¥ = {t1 := u1,...,t; := ug} be a generalized substitution
on terms over Fprob. Let [] be a function replacement, replacing functions from
Frepl € Frrob and introducing variables from Fpes.

We define the replacement of X, for which we write [X], as the union of
a substitution and a generalized substitution. The first one, [X]prob contains
the straightforward translation of X' by []. The second one, [X]pet, defines the
translation of the application operator on Fpet.

[E]Prob = { [tl] = [ul]a R [tk] = [uk] }
[Xpet ={a:=[t-X] | @ € Fpet, a=[t]jandt#t-X }.
[Z] = [Z]Prob U [X]pet-

Note that the notation [X]pyep is slightly misleading, because the [¢;] and [u;]
can contain variables from Fper as well. It is easily checked that [X] is always a
well-formed, generalized substitution.

Theorem 1. Let ¥ = {t; := uy,...,t := ur} be a generalized substitution on
terms over Fpron. Let [] be a function replacement, replacing functions from
Frepl C Fprob, and introducing variables from Fpet. For every term term t over

fProba
[t- 2] =[t]-[X].

Proof. We use induction on the term structure of t.

— If ¢t equals one of the t;, then [t; -] = [u;], by construction of [X] D [X]prob-

— If ¢t does not equal any of the ¢;, and [t] € Fper, then [t] - [X] = [t - 2], by
construction of [X] D [X]pet-

— If t does not equal any of the t;, and [t] € Fpes, then write t = g(wy, ..., wy).
We have [g(w1,...,w,)-X] =[glwi-X,...,w,-X)] = g([wr-X], ..., [wn-X]).
By induction, this equals g([wi] - [X],...,[ws] - [¥]). But this is equal to
[g(wi, ..., wy)] - [X], because [t] # [t;] and [t] € Fpet-

Theorem 2. Let ¥ = {t; := uq,...,t; := ur} be a generalized substitution on
terms over Fprob. Let [] be a function replacement, replacing functions from
Frepl € Fprob, and introducing variables from Fpes.

For every term t over Fprob,

[ta] = [u], - - [te] = [us] B ([E] - [2]) ~ ([t] - [Z]per)-
Proof. The missing replacements can be made up by equality replacement.

In the rest of this paper, we will only use substitutions, not generalized substi-
tutions. Theorem 2 will not be used.

Ezample 6. Consider the equality 0 = 1, and the clause p(f(0,0), f(0,0)). As-
sume that Frept = {f}, [f] =F, and that

[f(0,0)] =a, [Ff(0,)]=58, [f(1,0)]=r, [f(1,1)]=0.
Using [], the clause p(f(0,0), £(0,0)) translates into
Va F(0,0,a) = p(a, a).

Using paramodulation from 0 = 1, the following 3 clauses can be obtained:

VB F(0,1,53) = p(B,8),
Vy F(1,0,7) = p(7,7),
V8 F(1,1,58) — p(3,6).

The following clauses are examples of clauses that cannot be obtained:

Yap F(0,0,a) = F(0,1,5) = p(a, B),
VBy F(0,1,8) = F(1,0,7) = p(B,7),

Example 6 shows that one does not always have to replace all occurrences. Nev-
ertheless, one also does not have a full freedom when deciding which occurrences
are to be replaced. If one wants to paramodulate from an equation ¢; & t5 into a
literal A, then the possibilities are determined by the occurrences of [¢1] in [A].
In the clause of Example 6, the first and second occurrence of 0 are represented
by distinct arguments of F. However the (first and third), and the (second and
fourth) occurrence are represented by the same argument of F. Therefore these
cannot be separated.

Whenever some term, constructed by a function symbol in Fgrepi, has more
than one occurrence, all occurrences are represented by the same variable in the
[J-translation. Therefore, paramodulation must be carried out in such a way
that it does not introduce a distinction between identical terms with a symbol
from Frep on top. In the previous example, f(0,0) was such a term. We call the
resulting restriction of paramodulation non-separating.

We now define the notion of system of equations. Only systems with k =1
will be used in this paper, but the results that we prove in this section also hold
for k > 1.

Definition 11. A system of equations £ is a set of form
E={uy ~ty,...,ux R tr}, where uy,t1,...,ug,ty are terms.

Replacement of equals is controlled by extensions. An extension determines how
replacements are made inside identical Frepi-terms.

Definition 12. Let £ = {u; = t1,...,u; =t} be a system of equations with
terms over Fprob- Let t and u be two terms over Fpron. We write £(t,u) if u can
be obtained from t by finitely often replacing a t; by its u; (or a u; by its t;), at
arbitrary positions, but never in the scope of a function f € Frepi-

An extension X of £ is a function from the set of terms over Fprop to itself.

For every term f(wy,...,wy,) over Fprob, the following recursive condition must
hold:

— If f € Frepl, then
flwi,...,w,) - X has form f(v1,...,v,),
and for each i with 1 < i < n, it must be the case that
E(v, w; - X).
— If f € FRepl, then
flw,...;wy) - X = flw - X, ..., w, - X).

The application of X on a quantifier free formula F is obtained by applying X
on each top level term in F.

We write ¢- X instead of X(t), because of the close relation with the extension of
a generalized substitution. The £-relation allows arbitrary replacement of equals
by equals, but not in the scope of a function symbol from Frepi. Replacements
inside the scope of a function symbol from Frepi are controlled by the extension,
which ensures that the same term is always rewritten in the same way. The
non-separating paramodulation rule is defined in Definition 19.

Ezxample 7. In the first paramodulant of Example 6, = {0 =~ 1}, and
f(0,0) - X = f(0,1). For the atom p(f(0,0), f(0,0)), the only atom A with

€(p(£(0,0), £(0,0)), A) equals p(f(0,1), f(0,1)). For atom ¢(£(0,0),0, £(0,0)),
there would be two possibilities, ¢(f(0,1),0, f(0,1)) and ¢(f(0,1),1 (,1)).

Definition 13. Let £ = {t; = u1,...,tr = ur} be a system of equations with
terms over Fprob. The replacement of £, written as [E], is defined as the system
of equations

{ [t1] = [va],- - -, [tr] =~ [ug] }-

Let X be an extension of £. The replacement [X] of X is defined as the substi-
tution
[Zl={a:=[t-X] | a € Fpet, and a =[t] }.

Theorem 3. For every term t over Fprob,
[t 2] = [1-[5].
For every quantifier free formula F with terms over Fprob,
[F- 5] = [F] - [5).
Theorem 4. For each pair wy,ws of terms over Fprob,

E(wy,ws) implies [E] F [wi] & [w2].

Proof. 1t is enough to show the lemma under the assumption that ws can be
obtained from w; by a single replacement. Suppose that there is an equation
(t u) € &, s.t. there is a position 7 in wy and ws, s.t. wy and we differ only at
position 7w, w; contains ¢ on 7, and wy contains u on 7., Then ([t] ~ [u]) € [£],
[w1] and [w2] differ only at position 7, [w;] contains [t] on 7 and [ws] contains
[u] on 7.

Theorem 5. Let £ = {t; = u1,...,tx = ur} be a system of equations with
terms over Fpron- Let X be an extension of £. Let z1 be a term over Fprob,
which is constructed by a function symbol f € Frep1. Let 22 be some term over
Fprob that contains z1.
Then either z1 - X is a subterm of zo - X, or z1 - X is a subterm of one of the
terms tl,ul, fe ,tk,uk.

Proof. Suppose that z; - ¥ is not a subterm of z5-X. Let 2’ be a smallest subterm
of 29, s.t.

— 21 is a strict subterm of 2z’ and 2’ is a subterm of z,,
— 2’ has form f(ws,...,w,) with f € Frepi.
— 21 - X is not contained in 2’ - ¥.

We show that such 2’ exists. First, let 2" be a smallest subterm of 2z, which
contains z; and for which z; - X is not a subterm of 2z - X. Then, if all subterms
between z; and 2’ would have a function symbol f & Frep On top, then z; - X
would be a subterm of 2" - ¥, because f(wi,...,wy,) X = f(wr-X,...,w, - X)
in case that f & FRepl,

The application f(ws,...,w,)-X hasform f(vi,...,v,). Term z; is a subterm
of one of the w;. By definition of extension, £(w; - X', v;). By minimality of
Z', it must be the case that z; - X' is a subterm of w; - X. From the construction
of 2/, it follows that z; - X' is not a subterm of v;. Because £(w; - X, v;), it is
possible to rewrite w;- X into v;, using the equalities in £. In the rewrite sequence,
there is a last term that still contains z; - Y. Because z; - X' is constructed by
a term in FRepl, rewriting inside z; - X is not allowed. Therefore the equality
t; =~ u; (with 1 < j < k) that removes z; - ¥ must contain z; - .

3 Translation of Resolution on the Clause Level

In this section we will show the following: Let [] be some function replacement
replacing functions from Fgrep and introducing variables from Fper. Let S be
some set of clauses. If S has a resolution refutation in which all paramodulation
steps are non-separating, and [S] is obtained from S by replacing each clause
V1 ---z R by its translation Vz; - - -z, V Var(R) Def(R) — [R], then [S] has
a natural deduction refutation with a size bounded by a polynomial in the size
of the refutation of S, on the condition that for each function f € Frepl, its
translation Ry is serial, which means the following:

Definition 14. Let R be an (n + 1)-ary relation. The seriality axiom for R is
the formula Vo1 - - -z, Jy R(z1,- .., Tn,y)-

The refutation of [S] can be obtained by step-by-step translation of the proof
steps. We will sum up the standard resolution rules, as they can be found for
example in [15], and show that for each rule the translation of the conclusion is
provable from the translations of the premisses. We will not explicitly consider
the polynomial complexity bound, because it will be evident from the proof
constructions that they have small polynomial size.

In order for the translation to work, paramodulation needs to be non-separating,

which intuitively means that equality replacement cannot introduce a distinction
between two Skolem terms in a clause.
In resolution, instantiation is controlled by unification of terms or literals that
need to be equal before the rule can be applied. The use of unification is impor-
tant for efficiency, but not important for soundness of the rules. Therefore we
can define a separate instantiation rule, and assume that the other rules do not
instantiate. This simplifies the presentation. We define instantiation. The defi-
nition is slightly more complicated than usual, because we do not have implicit
quantification.

Definition 15. A generalization A is a set of form {z1,...,zn}, s.t. each z; is
a variable. If F is a formula, we write F' - A for the application of A on F. The
result equals Vxy ---x,, F.

Definition 16. Let C = Vx1---xx R and D = Vy; -y, S be clauses. We
call D an instance of C if there exists a substitution ©, which assigns only to
variables from x1,...,xy, s.t. R-O = S, and for the generalization {y1,...,ym},
none of the variables yi1,...,ym is free in Vz1 -- -z R.

It is easily checked that C' |= D, if D is an instance of C. We also treat permu-
tation separately:

Definition 17. ClausesVa1---x, L1V ---VL,, andVxy---z, M{V---V M,
are permutations of each other if

{Ly,..., Ly} ={My,...,M,}.
Definition 18. We define the unary rules:
equality swapping

Vey---xp t1 &t VR Vor--rxp 102 VR
Ve o, tao=t1 VR V- -xp t2¢tIVR

equality reflexivity

Vey---x, t®&tVR
V.’L'l"'.Z'k R

equality factoring

Ve o, ti1xtaViEi =~t3 VR
Vaq---xp tlﬁtgvtgaet;;VR

Definition 19. We define the binary rules:
resolution
Vz1---xz, AV Ry Voi---zp —AV Ry
Vri---x2, R1V Re
non-separating paramodulation

Let & = {t1 =~ ta}. Let X be an extension of £. Assume that E(Ry, Ry-X),
Then

Vaeir-- -z, 61 xta VIR Ve, -z Ro
V.’L'l"'l'k R1VR12

The intuitive meaning of the non-separating paramodulation rule is as follows: If
there there are two occurrences of the same term f(wy,...,w,) with f € Frepl,
which contain ¢; on some position, then ¢; has to be replaced by t5 either on
both positions or on neither of them.

Ezample 8. Assume that Frep = {f, 9}- Using equality 0 = 1, we have

2(0,0,0) = p(0,1,1) possible,

q(s(0,0), s5(0,0)) = q(s(0,1),5(1,0)) possible because s € Frepl,
q(£(0,0), £(0,0)) = q(f(1,1), f(0,0)) not possible,

p(£(0,0), f(0,0),0) = p(f(0,1), f(0,1),0) possible,

p(£(0,0), £(0,0),0) = p(f(1,0),f(1,0),1) possible,

q(£(0,0),9(0,0)) = ¢q(f(0,1),9(1,0)) possible.

In case one does not paramodulate into Skolem terms, which is known to be com-
plete, and often implemented for efficiency reasons, all paramodulation steps will
be automatically non-separating. We provide the translations for the derivation
rules:

3.1 Instantiation

Assume that the clause Vy; ---y,, S is an instance of the clause Vzy---x R
through substitution © and generalization A. We need to construct a proof that

Vzi---xp V Var(R) Def(R) — [R]

implies
Yyi - ym V Var(S) Def(S) — [5].

Write © = {z1 := t1,...,2k := tx}. We have R- O = S. The generalization A
equals {y1,-..,ym}, and none of the y; is free in Vz; - - -2 R.

Let [O] be constructed from @ as in Definition 10. It is easily checked that
(z :=t) € [O] implies € Fper or z is among the z1,...,2,. As a consequence
[@] is a substitution and it is possible to construct the proof given in Figure 1.
We justify the proof steps:

S1 Because yi,...,Y, are not free in Vz; ---z; R, they are also not free in
V1 ---zp V Var(R) Def(R) — [R]. Therefore, the y1,...,ym are fresh.

S2
S3

S4
S5

S6

If a variable o € Var(S) occurs in [R], then it also occurs in Var(R). Hence
it is still fresh.

An assumption.

[@)] is a well-formed substitution.

It is easily seen that (Def(R) — [R]) - [@] = (Def(R) - [©]) — ([R] - [O)]),
but we also need to check that all atoms in Def(R) - [0] are provable. Let
A € Def(R). Then A has form Rz([wi],...,[wn], [f(w1,...,wp)]), where
f € Frept and f(w1,...,wy) occurs in R. Because f is not in the domain
of @, f(wi,...,wy)-6O occurs in S and equals f(w; - O,...,w, - O). As a
consequence, we have the atom Ry ([w-0),..., [wn-O], [f(w1,...,wn)-O]) €
Def(S). From Theorem 1, it follows that this equals

Ry([wn]-[6],...,[wn] - [O), [f(wr,...,wn)]-[O]),

which in turn equals

Re([wi],...,[wn], [f(wi,...,wn)])-[0] =A-[6].
By Theorem 1, [R]-[O] =[R-0]=[S].

Fig. 1. Natural Deduction Proof for the Instantiation Rule

Vzi1---xp V Var(R) Def(R) — [R]
Fresh y1 - ym S1
Fresh Var(S) S2
Def(S) S3
(Def(R) — [R]) - [©] S4
[R]-[©] S5
[S] S6

Yyi - - - ym V Var(S) Def(S) — [S]

3.2 Equality Reflexivity

Assume that the clause Vz; --- 2y R is obtained from Vz,---x t 2 tV R by
equality reflexivity. We need to construct a proof of the fact that

Vi1 --- @y ¥ Var(t, R) Def(t,R) — [t #tV R]

implies

Vzq - -~z V Var(R) Def(R) — [R].

There is no difficulty in showing that [¢] % [¢] V [R] implies [R]. The difficulty of
the proof is the fact that there may be variables in Var(t, R), with corresponding
definitions in Def(¢, R), that do not occur in Var(R) (and Def(R)) For these
variables, proper instantiations need to be found. In order to find these, the
seriality axioms are needed.
Write

Var(t, R)\Var(R) = {ay,...,a,}, with n > 0.

Assume that the o; are ordered in such a way that if a; = [s1], o; = [s2], and
s1 is a subterm of sz, then i < j. Write A; (W1, a1), As(Wa, @), ..., Ap(Wn,)
for Def(t, R)\Def(R). Due to the way the aq,...,a, are ordered, a; does not
occur in w;, if 4 < j. Using this, we can construct the proof given in Figure 2, in
which the ay, ..., a, are 'resolved away’ with the seriality axioms.

3.3 Resolution, Equality Swapping, Equality Factoring,
Permutation

For the other rules, with the exception of paramodulation, it fairly easy to show
that they can be reconstructed.

In the resolution rule, it is possible that a term with an f € Frep as top
symbol occurs in one of the premisses, but not in the result. In that case, the
definitions for the terms that do not occur in the result need to be resolved
away, in the same way as with the equality reflexivity rule. One can either do
this directly, or alternatively reformulate the resolution rule as follows:

resolution 2

Vei---x AVRy Ve -2, AV Ry
le"'xk ulséUqV"‘Vun?éunVRlVR?’

Here uy, ..., u, are the subterms that occur in 4 but not in R; V Ry. After this,
Vz1 .-z RiV Re can be obtained through n applications of equality reflexivity.

3.4 Non-Separating Paramodulation

The non-separating paramodulation rule is the rule that is the most complicated
to translate:

non-separating paramodulation

le"'.'L'k tlthVRl VIBl"'.fL'kRQ
Vib'l"'.'L'k R1VR12

on the condition that £(R}, Ry-X), with & = {t; ~ t2} and ¥ an extension
of £.

As is the case with the resolution rule, there can be terms occurring in one of
the premisses that do not occur in the conclusion. One can proceed in the same
way as with the resolution, by keeping the removed terms in negated equations

Fig. 2. Proof for Equality Reflexivity

Vzi---xp V Var(t, R) Def(t,R) = [t £tV R] (assumption)

Va1 xp
Va1 A1(m1,a1) Vaz Az(mz,az) e Van An(ﬁn,an)
V Var(R) Def(R) — [t £tV R] (rearranging quantifiers)
Fresh =1 -- -z
Fresh Var(R)
Def(R)
VOL1 A1(E1,(11) \7’a2 A2(E2, 02) e Van An(ﬁn,an)
V Var(R) Def(R) — [t 2tV R] (instantiation)

Ja; Ai(wi,a1) (instantiation of seriality axiom for A;)

A1 (El, a1)

Yoo A2(m2,0§2) T Van An(mn,an)

V Var(R) Def(R) — [t £tV R] (instantiation)
Jay Asx(Ws,) (instantiation of seriality axiom for A,)
AQ(EQ, 02)
dan, An(Wn,n) (instantiation of seriality axiom for A,)

A (mn, an)

VY Var(R) Def(R) — [t £tV R]
[t %tV R]
(R]

[R] (3-elimination)

[R] (3-elimination)

[R] (3-elimination)

[R] (3-elimination)

Vzi---zp V Var(R) Def(R) — [R] (V-introduction, —-introduction)

in the conclusion. However, there is no need to keep the negative equations since
their removal is trivial. It is sufficient to keep the definitions of the terms that
disappeared. The result is the following rule:

V£L'1 Tk A Var(tl,tg,Rl) Def(tl,tg,Rl) — [tl ~tyV R1]

and
Vxyi---zp V Var(Rz) Def(R3) — [Ra)

imply
le Tk A Var(tl,tz,Rl,R2,R'2) Def(tl,tz,Rl,Rz,Ré) — [Rl \Y RIZ]

Given X, one can define [X] as in Definition 13. Consider the proof given in
Figure 3.
The proof steps can be justified as follows:

S1 Instantiation of the first premisse.

S2 Instantiation of the second premisse.

S3 Instantiation of S2, using [X].

S4 We show that the atoms in Def(Rs) - [X] are provable. Let A € Def(R»).
One can write A = Ry([w1],-..,[wn], [f(wi,...,wy,)]), where f € Frepi
and f(wi,...,w,) occurs in Rs.

By definition of extension, f(wi,...,w,) - X has form f(vy,...,v,), with
E(w;- X, v;), for 1 < i < n. From Theorem 5, it follows that f (w1, ..., w,) X
occurs in either Ry - X, t; or ts.

If f(wy,...,wy) - X occurs in Ry - X, but not in R}, then one can apply an
argument, similar to the last part of the proof of Theorem 5.

((Because £(R2 - X, R)), it is possible to rewrite Ry - X into R}, using
the equality ¢t; & t2. In the rewrite sequence, there is a last term that still

contains f(vy,...,v,). Because replacing in or at a v; is not allowed, and
rewriting by ¢; & to removes f(v1,...,V,), either ¢; or ¢ must contain
F@1,ey0n) = [, w) - 5)

Because f(vi,...,v,) occurs in t1,ts or R), it must be the case that

Rf([Ul], ey [Un], [f(’Ul, . ,’Un)]) S Def(tl,tz,Rl,RQ,Rlz). (].)
Since [X] is a substitution, Rz ([wi],...,[wr], [f(wi,...,wy)])-[X] equals

Rf([wl] : [E]a .. -7[wn] : [2]7 [f(wla . ;wn)] : [E])7
which, by Theorem 3, equals

Ry([wr-X),... [wn- X, [flwi,...,wp)-XZ]). (2)

Since for each 4, (withl <i<n), &(w;-X, v;), it follows from Theorem 4,
that [t1] & [t2] F [w; -] = [v;]. Then it follows from (1) that (2) is provable.
S5 Follows from Theorem 3.
S6 Follows from Theorem 4, because (R}, Ry - X).
S7 V-introduction.
S8 V-introduction.
S9 V-elimination.

Fig. 3. Proof for Non-Separating Paramodulation

Vi - ar V Var(ty, t2, R1) Def(t1,t2, R1) — [t1 = t2 V R (premisse)
Vzq---xp ¥V Var(R2) Def(Rs) — [Ra] (premisse)
Fresh z1,..., 2k

Fresh Var(t1,t2, Ri, Ro, Rb)
Def(t1,t2, R1, Ra, R5)

[t1] = [t2] V [Ri1] S1
[t1] = [t2]
A Var(RQ) Def(Rz) — [Rz] S2
(Def(R2) — [R2]) - [X] S3
[R2] - [X] S4
[R2 - X] S5
[Rs] S6
[R1] V [RY) S7
[R1]
[R1] V [RY) S8
[R1] V [RY] S9

Vay -z ¥ Var(ty, t2, R1, R2, Ry) Def(t1,t2, Ri, Re, Ry) — [R1 V R)]

4 Translation of the CNF-transformation

In the previous section we have shown that it is possible to replace function
symbols by arbitrary serial relations in resolution proofs on the clause level.
This is possible on the condition that paramodulation steps are non-separating.

In order to be able to use resolution on unrestricted first-order formulas,
one needs to tranform a first-order formula into clausal normal form (CNF).
During the CNF-transformation, one normally introduces Skolem functions for
existentially quantified variables, and one usually replaces some subformulas by
new predicate symbols, for reasons of efficiency. (See [3], [2], [17], [9])

In this section we show that in the CNF-transformation, one can introduce
serial relations instead of Skolem functions. After that, the transformation to
CNF can be continued as with Skolem functions and one obtains the same clauses
that one would have obtained otherwise, but with serial relations instead of
Skolem functions.

The resulting CNF-transformation lies completely within first-order logic,
and has a size that is polynomial in the size of the original CNF-reduction
sequence.

We will consider CNF-transformations with the following general pattern:
First, new names are introduced for certain subformulas that would cause ex-
ponential blow-up. After that, the formula is transformed into negation normal
form. Then antiprenexing is applied on the formula. After that, the resulting
formula is Skolemized. Here we will introduce serial relations instead of Skolem
functions. Although the intuition behind the relation-introduction is straightfor-
ward, the actual transformation is technically involved, due to technical difficul-
ties that we will explain shortly. After Skolemization, the resulting formula can
be factored into clauses as usual.

We now explain the basic idea, of the relation introduction, and after that the
source of the technical difficulties. Consider the formula Vz p(z) — Jy q(z,y). Its
Skolemization equals Vx p(x) — q(z, f(x)). Instead of Skolemizing, one can in-
troduce the relation F'(z,y) := (3z q(z,2)) — q(z,y) and construct the formula
Vz p(z) = Vy F(z,y) = q(z,y).

Relation F' can be easily proven serial, because Vz3y (3z gq(z, 2)) — q(zx,y)
is a tautology. In addition, the formula Vz p(z) — Vy ((3z ¢(x, 2)) — q(z,y)) —
q(z,y) is easily provable from Vz p(z) — Jy q(z,y).

Once the Skolemized formula has been replaced by its relational counterpart,
the CNF-transformation can proceed in the same way as on the Skolemized
formulas. However, there is one technical difficulty that is caused by the fact
that standard outermost Skolemization cannot be iterated. In order to obtain
Skolem terms that are as small as possible, Skolemization is usually done from
outside to inside, because otherwise one would obtain nested Skolem terms.

If we replace an outermost Skolemization sequence by an outermost relation
introduction sequence, then the existential variables do not disappear, but are
replaced by universal quantifiers. Later Skolemization steps will depend on these
universal quantifiers, and this introduces unwanted dependencies. The following
example shows the problem:

Example 9. The following two formulas show the problem with outermost Skolem-
ization. Qutermost Skolemization of Vz Jy; Jy2 p(x, y1,y2) results in

Vz Jya p(z, f1(x),y2). Skolemizing one more time results in Vz p(z, f1(z), f2(z)).
It appears that there exist no binary relations Fi, F» for which the formulas

vz Vyi Yya Fi(z,y1) = Fa(z,92) = p(x,91,92),
Va 3y Fi(z,y1),
Va ys Fa(z,y2),

are provable. The problem is due to the fact that in the original formula, the
92 can only be chosen with knowledge of y;. The same problem appears in the
formula V1 Jy; Voo Jya p(x1,y1,T2,y2). Outermost Skolemization results in
Vay Voo p(ay, f1(21), 22, f2(21,22)).

Again, there seems to be no way of finding relations that are serial and for
which Vz1 Yy; Voo Yy Fi(x1,y1) = Fa(x1, T2, y2) = p(T1,y1, T2, y2) is provable.

The problem can be solved by using innermost Skolemization instead of outer-
most Skolemization. Innermost Skolemization was considered in [16] and proven
sound there. Innermost Skolemization proceeds in the same way as standard
Skolemization, but it starts with an innermost existential quantifier, instead of
an outermost existential quantifier.

Example 10. On the first formula of the previous example, one step of inner-
most Skolemization results in Vx Jy; p(x,y1, f(x,y1)). One more step produces
Yz p(z, f1(2), f2(z, fi(z1)))-

Similarly, innermost Skolemization iterated on the second formula produces
the final formula Yz, Va3 p(z1, fi(21), T2, fa(z1, f1(21), 72)).

Innermost Skolemization is not suitable for proof search because it results in
bigger Skolem terms. However, the proof length of a resolution proof does not
increase if one uses innermost Skolemization instead of outermost Skolemization.
This is due to the fact that, although Skolem terms obtained from innermost
Skolemization are bigger, they do not depend on more variables. As a conse-
quence, whenever in a clause two (outermost) Skolem terms are equal, their
innermost counterparts are also equal. Therefore, one can pass the clauses ob-
tained from the outermost Skolemization to the theorem prover. If the prover
returns a proof, then one can convert it into a proof of the clauses obtained
from the innermost Skolemization, without improving the number of proof steps.
Then this proof can be used to replace the function introductions by relation
introductions. There is one remaining problem, which is caused by the fact that
non-separating paramodulation steps on Skolem terms obtained from outermost
Skolemization are not necessarily non-separating paramodulation steps on the
corresponding Skolem terms that one obtains from innermost Skolemization. We
will discuss this in Section 4.1.

Definition 20. A formula F is in negation normal form if it does not contain
< and —, and every occurrence of — is applied to an atom.

In the rest of this paper, we assume that all first-order formulas F' are standard-
ized apart, i.e. no variable is bound twice in F. This can be easily obtained by
renaming.

Definition 21. Let F' be a formula in negation normal form. If F' contains an
existentially quantified subformula, then F can be written as F[3y G |. Let
T1,...,T be the free variables of Ay G that are bound by a quantifier in F. Let
f be a new function symbol, s.t. ar(f) = k. Then F| G - {y := f(z1,...,2k)}]
is a one-step Skolemization of F[3y G].

Let F = Fi,..., F,, be a Skolemization sequence, i.e.

— each Fiy1 is a one-step Skolemization of F;, which Skolemizes some subfor-
mula Jy; G;.
— F,, has no remaining existential quantifiers.

F,, is an outermost Skolemization of F, if each Jy; G; is not in the scope of
another existential quantifier in F;.

F,, is an innnermost Skolemization of F, if no G; contains another existential
quantifier.

We prove the claim that instead of Skolem functions, serial relations can be
obtained:

Theorem 6. Let F' be a formula in negation normal form containing an ex-
istential quantifier. Write F as F[Jy A(zi,...,%5,y) |, where z1,...,z) are
the quantified variables that are bound in F and free in Iy A(x1,...,zr). Let
F[A(z1,...,%5,9(21,-..,21)) | be obtained by one-step Skolemization

There is a (k+1)-place relation G, for which the following formulas are provable:

SER Vzi - -z Jy G(z1,...,2k,Y),
SKOL F[Vy G(z1,...,zk,Y) = A(z1,--.,Zk,Y) |-

Proof. Take G(x1,-..,zk,y) := (2 A(x1,...,2K,2)) = A(x1,...,%k,y)- Then
SER becomes

Vey -z Jy (32 Az, ..., 2k, 2)) = A(T1,- .-, Tk YY),

which is a simple tautology.
We show that SKOL is logically equivalent to F. Expanding G in SKOL yields:

F[Vy ((3z A(z1,...,2k,2)) = A(z1,-- -, Zk,Y)) = AlZ1,.. ., 2k, Y) |-
This is logically equivalent to
F[Vy (3z A(z1,...,25,2)) N Az, ..., 28, y) V A(T1, . .-, 2k, Y) |,
which in turn is equivalent to
F[Vy (3z A(z1,...,25,2)) VA(Z1,..., Tk, Y)]
This final formula is equivalent to

F[3z A(z1,...,28, 2)]

If one replaces an innermost Skolemization sequence by an innermost relation-
introduction sequence, then one obtains a formula that has the same structure
as the Skolemized formula, but with the Skolem terms replaced by variables
based on some function replacement []. In addition, it contains definitions of
form G(z1,...,Zk,y) — A that introduce the variables that are used in the
translations of the Skolem functions. The fact that in the orginal formula y was in
the scope of an existential quantifier Jy, ensures that in the relational translation,
y is in the scope of a definition Vy G(z1, - .., Zg,y) — A. The following definition
specifies more precisely the relation between the innermost Skolemization and
the innermost relation-introduction.

Definition 22. Let[] be a function replacement, replacing functions from Frepi
and introducing variables from Fpes. Let F' be a first-order formula that is stan-
dardized apart. A [|-translation of F' is a formula that can be obtained as follows
from F : Replace each atom A in F by [A]. Iteratively, insert definitions into F

in the following way: Select some subformula G of F and some term f(t1,...,tn)
with f € Frep- Let a = [f(t1,--.,tn)]- Then replace F[G] by
F[Va Rs([t1],...,[tn],) = G]. Call the result of the replacements F'. Then

F' has to meet the following conditions:

— No variable a € Fper has more than one definition in F'.

— For every definition Vo Ry([t1],. .., [tn], @) = G’ in F', the variable o occurs
somewhere in G'.

— Let t be a term occurring in F' in the scope of quantifiers Vxy - - -Vxi. Write
Var(t) = {oa,...,am}. Then the corresponding position in F' contains [t],
and the path from the root of F' towards the occurrence of [t] contains
all quantifiers Vxy - - -V, oll quantifiers Vag - - -Va,,, and all definitions of
Def(t) in a correct order. (No variable occurs before it is quantified)

Theorem 7. Let Fy be obtained from F by innermost Skolemization. Let Fy be
obtained from F by making the corresponding relation replacements. Then there
is a function replacement [], s.t. Fy is a []-translation of Fy.

Ezxample 11. We demonstrate relation introduction on the formula
Vz1 Jyy Vxe Jys p(x1,y1,T2,y2). One step of innermost Skolemization re-
sults in Vzy Jy; Vae p(x1,y1,%2, f2(T1,y1,72)), and one more step of inner-
most Skolemization yields Vx1 Vo p(x1, fi(x1), 2, f2(z1, f1(21),22)). First put
Ry, (x1,91,%2,y2) == (Fz p(x1,91,%2,2)) = p(T1,Y1,22,Y2). Then one can
prove

Vz1 Jy1 Voo Vyo Ry, (21,91, 22,92) = p(T1,Y1,Z2,92).

After that, put
Ry, (z1,91) := (3z (Va2 VY2 Ry, (21,2, 72,92) = p(21,2,22,92)) =

(Vz2 Vy2 Ry, (w1,y1,22,y2) = p(T1,Y1,%2,Y2)).

Then Vi Vy1 Ry (21,41) — Vo2 Vyo Ry, (21,91, 22,y2) = P(21,41,%2,Y2) i
provable, together with the seriality axioms for Ry, and Ry,.

4.1 Replacing Innermost Skolemization by Outermost
Skolemization

We now justify the claim made in the previous section that innermost Skolem-
ization does not increase the proof length. Before we do this, we give an example
that makes clear that one has to use a form of paramodulation that is more
restricted than non-separating paramodulation.

Ezample 12. Consider the formula Vz Jy; yo p(z,y1,y2) and the two clauses

Ci p(oafl(o)an(O))a
Cs p(07f1(0)7f2(07f1(0)))

The clause C; is obtained by instantiating the outermost Skolemization of F'
by 0. The clause C5 is obtained by making the same instantiation in the in-
nermost Skolemization. From Cj, it is possible to derive p(0, f1(1), f2(0)) by
non-separating paramodulation from equation 0 & 1. However, it is not possible
to derive p(0, f1(1), f2(0, f1(0)) from C5 by non-separating paramodulation.

The example shows that non-separating paramodulation steps on clauses
with innermost Skolem terms can in general not be translated into non-separating
paramodulation steps on the corresponding clauses with outermost Skolem terms.
Therefore, the following more restricted version of paramodulation is needed.

Definition 23. Let[] be a function replacement replacing functions from Frep-
The Frepi-simultaneous paramodulation rule is the following rule:

Ve, t1 &tV R Ve, -z, Ro
le"'.'ll'k R1VR12

where R) is obtained from Ry by replacing arbitrary occurrences of t1 by to. If
at least one occurrence of t1 in the scope of a function symbol from Frepi is
replaced, then all occurrences of t1 that are in the scope of a function symbol
from Frep1 have to be replaced.

Ezample 13. The paramodulation step from C; in Example 12 was not Frepi-
simultaneous, because Frept = {f1,f2}. The clauses that can be obtained by
Frepr-simultaneous paramodulation from p(0, f1(0), f2(0)) are p(1, f1(0), f2(0)),
p(0, f1(1), f2(1)), p(1,f1(1), f2(1)).

Using F-simultaneous paramodulation, we can state the main result of this pa-
per:

Theorem 8. Given a first-order formula F, and a resolution refutation for
which

— the CNF-transformation uses subformula replacement, antiprenexing and
outermost Skolemization,

— the resolution refutation on the clause level uses the standard resolution rules
but Frepi-simultaneous paramodulation, where Frep1 are the Skolem func-
tions introduced in the CNF-transformation,

then one can effectively obtain o purely first-order refutation of F' that is poly-
nomial in the size of the CNF-tranformation plus the size of the resolution refu-
tation.

The proof will follow in the rest of this section. Observe that, in case one does
not make any replacements at all inside Skolem functions, which is known to be
complete because of the results in [5], one automatically uses Fgyo1-simultaneous
paramodulation.

In that case, one also gets the splitting rule for free. The splitting rule is
the following rule, used on the clause level by resolution theorem provers: If the
prover derives a clause Vxy - - -z (R1 V Ra), s.t. no x; occurs in both Ry and Ra,
then Vxy-- -z (R1 V Rp) implies (V1 - 2 R1) V (Va1 --- 2 Ra). These two
clauses can be refuted seperately by backtracking.

In general, if some clause Vr;---zp Ry V Ry is splittable, its translation

Vap - .-z V Var(Ry, Ry) Def(R;y, Re) — [R1] V [Rz] need not be splittable, con-
sider for example the ground clause p(f(0)) V ¢(f(0)) with translation
Va F(0,a) = p(a) V ¢(a). However, if one knows that one never paramodulates
inside Skolem functions, one can ’glue’ ¢(f(0)) to the clauses in the refutation
of p(f(0)), without ever being forced to modify p(f(0)) (and have to admit that
the remark about general splitting in the conclusion of [12] was incorrect)
We now continue by showing that the difference between innermost and out-
ermost Skolemization is smaller than it appears to be. Skolem terms obtained
from innermost Skolemization have exactly the same variables as Skolem terms
obtained from outermost Skolemization.

Theorem 9. Let F' be a formula. Let Fy be its outermost Skolemization. Let F;
be its innermost Skolemization. Then Fy and F» have the same logical structure
(this means that they only differ inside some atoms), and each Skolem term in
Fy depends on exactly the same variables as its counterpart in F;.

Proof. Tt is easy to see that F; and F5 have the same logical structure, because
Skolemization does not change the logical structure, except for the elimination of
existential quantifiers. We will show that the Skolem terms in F; and F5 depend
on the same set of variables in the following sequence of definitions and lemmas.

Definition 24. Let F' be a first-order formula. Let © and y be two variables that
are quantified inside F. Let A be the subformula of F' that is quantified by x. We
say that y eventually depends on x if there exists a sequence Iy, By, ...,3y, B,
of subformulas of F, s.t.

1. 3y, By, is inside A and x is free in Jy; B,
2. each Jy;y1 Biy1 is inside B; and y; is free in Jy;+1 Bit1, and
3. Yn=y.

Similarly, we say that a term t eventually depends on z in F' if there ezists a
sequence Jy; Bi,...,3y, By, of subformulas of F, s.t.

1. Jy; Bs, is inside A and x is free in Jy; By,
2. each Jy;y1 Biy1 is inside B; and y; is free in y;41 Bit1, and
3. yn occurs in t.

Lemma 2. Let Fi,...,F,, be a Skolemization sequence in which each F;y1 is
obtained from F; by Skolemization at an arbitrary position.

Let x be a universally quantified variable, occurring in Fy. Let y be a univer-
sally quantified variable, occurring in Fi. Let t be its Skolem term in F,,. Then
x occurs in t iff y eventually depends on x in F;.

Proof. Tt follows, by n times applying Lemma 3, that y eventually depends on z
in F} iff its Skolem term ¢ eventually depends on z in F5,. Because F5 does not
contain existential quantifiers, this is case iff x occurs in ¢.

Lemma 3. Let F' be obtained from F by one-step Skolemization. Let x be a
quantified variable, which occurs in both F and F'. Let A be the subformula
quantified by x in F. Let A’ be the subformula quantified by x in F'. Then:

1. Some term t in F eventually depends on x iff its counterpart t' in F' even-
tually depends on x.

2. Lety be an existentially quantified variable in F, which is not Skolemized in
F'. Then y eventually depends on x in F iff y eventually depends on x in
F'.

3. Let y be the existentially quantified variable in F which is Skolemized in F'.
Then y eventually depends on x in F iff the Skolem term for y eventually
depends on x in F'.

Proof. In order to prove the 3 properties from left to right, it is sufficient to
observe the following two points:

1. Let z; be a quantified variable occurring in F. Let G be the subformula of

F that is quantified by z;. Let 322 G5 and Jz3 G3 be subformulas of F) s.t.
— dzo G5 is a subformula of G and z; is free in G,
— dzz (3 is a subformula of G5 and 25 is free in G3.

If F' is obtained from F' by Skolemizing z», then Jz3 G is a subformula of
1, and z is free in Jz3 Gf.

2. Let 21 be a quantified variable occurring in F. Let G1 be the subformula of
F that is quantified by z;. Let dzo G2 be a subformula of F), let ¢ be a term
occurring in G, s.t.

— dzy (G4 is a subformula of G; and z; is free in Jz5 Go,
— the variable z5 occurs in ¢.
If F' is obtained from F' by Skolemizing zs, then z; occurs in #'.

Using this, the 3 properties can be easily proven from left to right.

Next we prove the 3 properties from right to left. In order to prove these,
we need the following 2 properties, which are essentially the converses of the
properties above.

1. Let z; be a quantified variable occurring in F. Let G be the subformula of
F that is quantified by 2. Let 323 G3 be a subformula of G;. Assume that
both z; and z3 are not Skolemized in F'. Then G is a subformula of F' and
still quantified by z;. Also 323 G§ remains a subformula of G}. Assume that
z1 is free in Jz3 G%. Then either

— 2z; is free in 323 G3, or
— there is an existentially quantified subformula 3z G5 of F) s.t.
e dzo (G2 is a subformula of G; and z; is free in 22 Go,
e Jz3 (G3 is a subformula of G5 and 25 is free in Gs.
Assume that the first case does not hold. Then 2; occurs in the Skolem term
introduced in F’. Let 3z G2 be the corresponding subformula of F. Because
z1 occurs in the Skolem term, it must be the case that z; is free in Jzo Gs.
As a consequence, dzo G is a subformula of G;. Because the Skolem term
occurs in G%, it must be the case that G2 overlaps with G3. Then either
Jzo G5 occurs in G3, or Jz3 G3 occurs in G5. The first possibility cannot
happen, because in that case z; would also occur in G.

2. Let 21 be a quantified variable occurring in F. Let G1 be the subformula of
F' that is quantified by z;. Let ¢ be a term occurring in G1. Assume that 2;
is not Skolemized in F’. Assume that z; occurs in ¢'. Then either

— 21 occurs in t, or

— there exists an existentially quantified subformula 3z9 G5 of F; s.t.
e dzy (5 is a subformula of G; and 27 is free in 325 Go,
® 25 is free in t.

We now have shown that terms obtained from innermost Skolemization do not
contain more variables than terms obtained from outermost Skolemization. In
order to prove that resolution refutations from sets of clauses with innermost
Skolem terms can be translated into resolution refutations from sets of clauses
with outermost Skolem terms, we also need to look into their structure:

Definition 25. We recursively define the set of Skolem-type terms.

— A wvariable x is also a Skolem-type term.
— Ifty,...,t, are variables or Skolem-type terms, f is a Skolem function, then
flt1,...,t) Skolem-type term.

Given a Skolem-type term f(t1,...,tn), we call the positions of the t; that con-
tain other Skolem-type terms internal positions. The positions that contain the
variables are called external. An outer-inner transformation © is a function that
assigns to Skolem terms of form f(x1,...,x,) Skolem-type terms. © must satisfy
the following conditions:

1. O(f(z1,...,xy)) is a Skolem-type term containg exactly variables x1,. .., z,
and some additional Skolem functions. In particular, there are no non-Skolem
functions in O(f(x1,...,2,)).

2. If some Skolem function g occurs in O(f(x1,...,Ty,)), and its i-th argument
is an internal position, then its i-th argument is an internal position in every
O(f'(x1,...,%m)) in which g occurs.

Outer-inner transformation © is extended to terms, literals and clauses as ex-
pected, by recursion.

Theorem 10. Let Frepi be the set of Skolem functions. Let © be an outer-to-
inner transformation. Let Cy, ..., C, be some set of clauses. If Cy,...,C,, have a
resolution refutation using F-non-separating paramodulation, then ©(CY),...,0(Cy)
have a resolution refutation using F-simultaneous paramodulation.

Proof. Tt is not hard to see that all for all (unrestricted) resolution steps holds:
If D can be obtained from D;,..., Dy, (with K = 1 or k = 2), then ©(D) can
be obtained from ©(Dy),...,0(Dy). In addition one has to show that if D is
obtained from D; and D, by Frepi-simultaneous paramodulation, then ©(D)
can be obtained from ©(D;) and ©(D2) by F-simultaneous paramodulation.
Write

D1:V331"'$kt1%t2VR1, DQZVIL'l"'SL'kRQ,

D:V.’L'l.'L'k R1VR12,

where R), is obtained from Ry by Frep-simultaneous paramodulation. Then
@(Dl) = Vrcl Tk @(tl) ~ @(tg) \Y Q(Rl), @(Dz) = ViEl Tk @(RQ),

and
O(D) =Vz1---zx O(R1) V O(R)).

Let £ = { X(t1) = X(t2) }. We need to show that there exists an extension X
of £, st. E(O(Ry) - X, O(RY)).

If ¢1 is not replaced inside Skolem terms in Rs, then one can define X from
flwr,...,wy) - X = f(wy,...,wy), for all Skolem terms f(w1,...,wy,)-

Otherwise, O is defined as follows: For each f € Frept, put f(w1, ..., wy)-X =
f(v1,...,v,), where w; = v; if w; is on an internal position of f. Otherwise v; is
obtained from w; by replacing all occurrences of X'(¢;) that are not in the scope
of a function from Frepi by X(t2).

4.2 The Complete Transformation

We have now discussed the technical difficulties, and we are ready to describe
the complete proof transformation.

The CNF-transformation usually starts with subformula replacement, in or-
der to avoid exponential blowup later in the transformation, see [17], [2], [9],
[11]. For example, the following formula will result in 27 clauses, when naively
factored into clausal normal form: (a1 Aby) V ---V (ap A bp).

Definition 26. Let F be o first-order formula. A formula definition (relative
to) F' is a formula of form

Yy ---xp A2, ... %) © R(@1,. .., 25),

in which A is a k-ary propositional symbol which does not occur in F, and R is
a k-ary relation.

The following is standard:
Theorem 11. Suppose that there exists a proof II of
FA Vzy---zp A(T1,...,25) ¢ R(z1,...,28) F L,
then there exists a proof of F' - L.
Proof. First substitute II' := II[A := R]. The result II' is a proof of
FA Vo -z, R(x1,...,28) ¢ R(z1,...,21) F L.

Because Vi - - -z R(x1,-..,25) <> R(x1,...,7) is a tautology, one can obtain
a proof IT" of F + L.

In the example before Definition 26, one can replace the formula by ¢; < (a1 A
b1),...,¢p ¢ (ap Abp), c1,...,cp, which can be easily factored into a clausal
normal form of size 4p.

After replacement of subformulas, the formula is transformed into negation
normal form. After that, usually antiprenezing (also called miniscoping) is at-
tempted, see [2]. Antiprenexing tries to reduce the scope of quantifiers using
transformations of form (Qz P(z) A Q) = (Qz P(z)) A Q, in case x is not free
in . Such transformations are sound, provably correct in first-order logic, and
they sometimes reduces the dependencies between quantifiers, which may result
in smaller Skolem terms. As an example, consider the formula Vz (P(xz) —
Jy Q(y)). Since these transformations take place before Skolemization, they are
not affected by our proof transformation, and they can be carried out as usual.
After Skolemization, the resulting formula is factored into clauses through the
following procedure:

Definition 27. Let F be a first-order formula in negation normal form, that is
standardized apart, and which does not contain existential quantifiers.

1. Replace each conjunction AN\ B by one of A or B.
2. Move universal quantifiers forward, using rules

(V2 A)VB=Vz (AVB), and AV(Vz B)=Vz (AV B).
3. Replace universal quantifiers Vx A, for which x is not free in A, by A.
The different clauses are obtained by making different choices in Step 1.

Theorem 12. Let F' be a first-order formula in negation normal form, that is
standardized apart, and which does not contain any existential quantifiers. Let []
be a function replacement, and let F' be a translation of F. (See Definition 22)
Then, for every clause V1 - - - xy, R that can be obtained from F' using the factor-
ing procedure of Definition 27 there is a clause V1 - - - 2 V Var(R) — Def(R) —
[R], which can be obtained from F' by adding the following rules to Definition 27.

2a
(VYo Rf(t1,...,th,00) > A)V B =Va R¢(t1,...,th,a) = (AV B),
and
AV (Va R¢(ty,...,th,a) > B) = Va R¢(ti,...,tn,a) = (AV B).

3a Replace universal quantifiers Va Ry(t1,...,tn,0) — A, for which o does not
occur in A by A. (In order to do this, one needs the seriality aziom for Ry)

5 Conclusions and Future Work

We gave a method for translating resolution proofs that include the CNF-
transformation into purely first-order proofs. The method is efficient and structure-
preserving. On the clause level, the resolution prover can make use of all of the
standard resolution rules, but paramodulation has to be restricted. The CNF-
transformer can make use of subformula replacement and standard Skolemiza-
tion.

Paramodulation has to be carried out in such a way that all occurrences
of the replaced term inside Skolem functions are treated consistently. Either
they are all replaced, or none of them is replaced. A common refinement of
paramodulation, in which no replacements at all are made inside Skolem terms,
and which is known to be complete, is covered by this restriction. In that case,
one can also keep the splitting rule.

We intend to implement the proof generation method, and see how well the
method performs in practice. It needs to be seen how readable the resulting
proofs are. In many cases, Skolem functions are meaningful (for example the
Skolem function for Jy in the power set axiom Vz Iy Va (a Cz ¢ a €y))
and such Skolem functions are better not eliminated. One explanation could be
that for such cases, functionality of the Skolem function is provable within the
theory.

When translating resolution proofs on the clause level, there are quite some
variations possible, which are not yet fully explored. As an example, if both f
and g are Skolem functions, then one can obtain different variables for the two
occurrences of g(z) in the resolvent of Yz p(f(z)) V p(g9(z)) with
Vz —p(f(z)) Vq(g(z)). In some cases, it would be possible to obtain more liberal
paramodulation in this way.

In addition, there are some variations possible when generating the serial
relations during CNF-transformation. Currently, we use the weakest possible
such relations.

Finally, it needs to be checked if the reduction from improved Skolemization
to standard Skolemization, that was described in [10] can be combined with the
proof generation method of this paper.

6

Acknowledgements

It was due to a question asked by George Moser during the Deduktionstref-
fen 2002 in Freiburg, that I started thinking about the problem of eliminating
Skolemization, but allowing the cut rule in proofs. I thank Marc Bezem for
discussions on the subject of this paper and Dimitri Hendriks for the pleasant
cooperation in [6], which is one of the roots of the current paper.

References

1.

10.

11.

12.

13.

Jeremy Avigad. Eliminating definitions and skolem functions in first-order logic.
In Harry Mairson, editor, Proceedings of the 16-th Annual IEEE Symposion on
Logic in Computer Science, LICS, pages 139-146, Boston, Massachusetts, June
2001 2001. IEEE Computer Society.

Matthias Baaz, Uwe Egly, and Alexander Leitsch. Normal form transformations. In
Alan Robinson and Andrei Voronkov, editors, Handbook of Automated Reasoning,
volume I, chapter 5, pages 275-333. Elsevier Science B.V., 2001.

Matthias Baaz, Christian G. Fermiiller, and Alexander Leitsch. A non-elementary
speed-up in proof length by structural clause form transformation. In IEEE Sym-
posion on Logic in Computer Science 1994, pages 213-219, 1994.

. Matthias Baaz and Alexander Leitsch. On skolemization and proof complexity.

Fundamenta Informatika, 4(20):353-379, 1994.

Leo Bachmair, Harald Ganzinger, Christopher Lynch, and Wayne Snyder. Basic
paramodulation. Information and Computation, 121(2):172-192, 1995.

Marc Bezem, Dimitri Hendriks, and Hans de Nivelle. Automated proof construction
in type theory using resolution. In David McAllester, editor, Automated Deduction
- CADE-17, number 1831 in LNAI, pages 148-163. Springer Verlag, 2000.

Marc Bezem, Dimitri Hendriks, and Hans de Nivelle. Automated proof construction
in type theory using resolution. Journal of Automated Reasoning, 29(3-4):253-275,
December 2002.

Peter Clote and Jan Krajicek. Arithmetic, Proof Theory and Computational Com-
plezity, volume 23 of Ozford Logic Guides. Oxford Science Publications, 1993.
Thierry Boy de la Tour. An optimality result for clause form transformation.
Journal of Symbolic Computation, 14:283-301, 1992.

Hans de Nivelle. Extraction of proofs from the clausal normal form transforma-
tion. In Julian Bradfield, editor, Proceedings of the 16 International Workshop on
Computer Science Logic (CSL 2002), volume 2471 of Lecture Notes in Artificial
Intelligence, pages 584-598, Edinburgh, Scotland, UK, September 2002. Springer.
Hans de Nivelle. Implementing the clausal normal form transformation with proof
generation. In Boris Konev and Renate Schmidt, editors, Fourth Workshop on
the Implementation of Logics, volume ULCS-03-018, pages 69-83. University of
Liverpool, Department of Computer Science, September 2003.

Hans de Nivelle. Translation of resolution proofs into short first-order proofs with-
out choice axioms. In Franz Baader, editor, Automated deduction, CADE-19 : 19th
International Conference on Automated Deduction, volume 2741 of Lecture Notes
in Artificial Intelligence, pages 365-379, Miami, USA, July 2003. Springer.
Xiaorong Huang. Translating machine-generated resolution proofs into ND-proofs
at the assertion level. In Norman Y. Foo and Randy Goebel, editors, Topics
i Artificial Intelligence, 4th Pacific Rim International Conference on Artificial
Intelligence, volume 1114 of LNCS, pages 399-410. Springer Verlag, 1996.

14.

15.

16.

17.

18.

19.

20.

William McCune and Olga Shumsky. Ivy: A preprocessor and proof checker for
first-order logic. In Matt Kaufmann, Pete Manolios, and J. Moore, editors, Us-
ing the ACL2 Theorem Prover: A tutorial Introduction and Case Studies. Kluwer
Academic Publishers, 20027 preprint: ANL/MCS-P775-0899, Argonne National
Labaratory, Argonne.

Robert Nieuwenhuis and Albert Rubio. Paramodulation-based theorem proving. In
Alan Robinson and Andrei Voronkov, editors, Handbook of Automated Reasoning,
volume I, chapter 7, pages 371-443. Elsevier Science, B.V., 2001.

Andreas Nonnengart. Strong skolemization. Technical Report MPI-I-96-2-010,
Max Planck Institut fiir Informatik Saarbriicken, 1996.

Andreas Nonnengart and Christoph Weidenbach. Computing small clause normal
forms. In Alan Robinson and Andrei Voronkov, editors, Handbook of Automated
Reasoning, volume I, chapter 6, pages 335-367. Elsevier Science B.V., 2001.

V.P. Orevkov. Lower bounds for increasing complexity of derivations after cut
elimination. Zapiski Nauchnykh Seminarov Leningradskogo Otdeleniya Matem-
aticheskogo Instituta Imenyi V.A. Steklova AN SSSR, 88:137-161, 1979. English
translation in Journal of Soviet Mathematics 2337-2350, 1982.

Frank Pfenning. Analytic and non-analytic proofs. In R.E. Shostak, editor, 7th
International Conference on Automated Deduction, volume 170 of Lecture Notes in
Artificial Intelligence, pages 394-413, Napa, California, USA, May 1984. Springer
Verlag.

R. Statman. Lower bounds on herbrand’s theorem. In Proceedings of the Amer-
ican Mathematical Society, volume 75-1, pages 104-107. American Mathematical
Society, June 1979.

