Splitting through New Proposition Symbols

Hans de Nivelle

Max Planck Institut fiir Informatik
Stuhlsatzenhausweg 85
66123 Saarbriicken, Germany
nivelle@mpi-sb.mpg.de

Abstract. The splitting rule is a tableau-like rule, that is used in the
resolution context. In case the search state contains a clause C1 V Co,
which has no shared variables between C; and C2, the prover splits the
search state, and tries to refute C1 and C> separately.

Instead of splitting the state of the theorem prover, one can create a new
proposition symbol «, and replace C; V C2 by C1 V a and —a V Cs. In
the first clause « is the least preferred literal. In the second clause « is
selected. In this way, nothing can be done with C> as long as C1 has not
been refuted.

This way of splitting simulates search state splitting only partially, be-
cause a clause that inherits from C: V a cannot subsume or simplify a
clause that does not inherit from C;. With search state splitting, a clause
that inherits from Ci can in principle subsume or simplify clauses that
do not derive from C;. As a consequence, splitting through new symbols
is less powerfull than search state splitting. In this paper, we present a
solution for this problem.

1 Introduction

It is an empirical fact that methods with state splitting are better on propo-
sitional problems than resolution-like methods. When there are variables, state
splitting becomes difficult due to the fact that it is necessary to maintain shared
variables between states. It seems reasonable to keep as much as possible from
state splitting, but avoiding the problems with shared variables.

The splitting rule is the following rule: Suppose that the search state of a
resolution theorem prover contains a clause C; V Cs, where both C; and Cs are
non-trivial and have no variables in common. In that case the prover splits its
search state into two states, one for C'y and one for C3. When properly applied,
the splitting rule can improve the chance of finding a proof significantly. In
addition to increased efficiency when finding a proof, the splitting rule increases
the chance of finding a saturation. This is due to the fact that C; or C> may
backward subsume clauses that are not subsumed by C; V Cs. Similarly it may
be possible to derive an equality from C} or C5 that simplifies the search state
significantly, but which could not be derived from C; V Cs.

Some resolution decision procedures rely on the splitting rule. Examples are
the procedure for ET of [FLTZ93] and [dN94], and the procedure for the 2-
variable fragment of [{NPHO1].

The splitting rule is practically useful, but difficult to implement in the res-
olution context. Currently (2001), Spass ([Wb01]) is the only implementation of
resolution with search state splitting. It is not practical to make two copies of the
search state. Therefore splitting has to be implemented through backtracking.
The system deletes C; V Cy from the search state, and replaces it by C;. After
that, search continues until either a saturation or a proof is found. If it finds a
saturation then the system can terminate. If the empty clause is derived, then
the system has to backtrack to the point on which C; was introduced, and re-
place it by Cs. In order to be able to restore the search state, the theorem prover
has to do a complex administration. In particular, when a clause is deleted be-
cause it subsumed or rewritten, it has to be be done in such a way that it can
be restored.

Because of these implementation difficulties, some resolution provers imple-
ment the following approximation: If the clause C; V C can be split, then it can
be replaced by the two clauses C; Va and —aV Cs. Here a is a new propositional
atom. It is ensured that « ist the least preferred literal in C4 V «, and that —« is
selected in —a V Cz. The only way in which —a Vv C3 can be used is by resolving
it with a clause in which a is maximal. Such a clause will be derived only when
C1 is refuted. This way of splitting has been implemented in the Saturate Sys-
tem ([GNN98]), and in Vampire ([RV01]). We call this way of splitting splitting
through new symbols.

Structural clause transformations ([NWO01], [BFL94]) are closely related to
splitting through new symbols. Assume that F; V F5 is antiprenezed, i.e. that
quantifiers are factored inwards as much as possible. In that case, every free
variable of F; or I, is a free variable of both F; and F5. A structural clause
transformation would replace Fy V F» by Fi V a(Z) and Vz(a(Z) — F»). Here T
are the free variables of F; and a is a new predicate symbol. In case F; and F;
have no shared variables, symbol a will be propositional.

Unfortunately, splitting through new symbols only partially simulates search
state splitting, because the new symbols hinder backward subsumption and sim-
plification. Every clause that inherits from C; contains the literal a.. Because of
this, it cannot simplify or subsume a clause that does not inherit from C;. This
makes that splitting through new symbols fails to have one of the major advan-
tages of splitting. In this paper, we give the following solution for this problem:
If there are two clauses C; V a and D, and C; subsumes D, then we replace D
by —a V D. In this way D is switched off, until o has been derived.

Simplification can be handled in the same way. Suppose that C; can simplify
the clause D; into Ds, but that the prover has the clause C7 V « instead of C
in its search state. Then D, is replaced by D3V «, and —a V D;. Doing this, the
simplification D- is available on the current branch, and D; is switched off until
o has been derived. We give an example:

Example 1. Suppose that one wants to refute the following clause set

p(0), —p(s'°(0)), s(s(X))~ X Vs(Y)rY,

and assume that one is using the Knuth-Bendix order. The equalities in the last
clause are uncomparable under the Knuth-Bendix order, so both equalities have
to be used for paramodulation.

The last clause can be split into s(s(X)) =~ X and s(Y) =~ Y. Splitting results
in the following two states, both of which have a trivial refutation using simple
rewriting and one resolution step. The states are:

p(0), —p(s'°(0)), s(s(X)) = X,

and
p(0), —p(s*(0)), s(Y)=~Y.

Instead of search state splitting, one can split through a new symbol. Using «
as new symbol, the last clause can be replaced by

s(s(X))~XVaand —aVs(Y)~Y.

After that, o can be derived by iterated paramodulation from s(s(X)) = X V a.
When this is done, s(Y) & Y becomes available again. This equality will simplify
=p(s'%(0)) into —p(0).

In Example 1, splitting through new symbols is better than no splitting at all,
but it is still not as good as state splitting. In the first search state, s(s(X)) & X
can simplify —p(s'6(0)) into —p(0). However s(s(X)) ~ X V a cannot simplify
—-p(s1%(0)), because of the extra literal a.

In the following example, we use extended backward simplification:

Ezxample 2. With extended backward simplification, Example 1 is handled as
follows: After the split, the search state consists of the clauses

p(0), -p(s%(0)), s(s(X))=XVa, -aVsX)=xX.

With s(s(X)) &~ X V a, the clause —p(s'¢(0)) is simplified into

—p(s**(0)) V o and —a V —p(s'%(0)).
Seven more rewrites result in

-p(0) V o and —~a V —p(s%(0)).
Now the complete search state consists of the clauses
p(0), ~p(0)Va, s(s(X))=XVa,
—a VvV -p(s'%(0)), -aVs(X)~X.

The first two clauses resolve into the clause a. After that, the two last clauses
resolve with o, which results in the clauses

—p(s'%(0)) and s(X) ~ X.

Now —p(s'¢(0)) is simplified into —p(0), which resolves with p(0) into the empty
clause.

In order to handle cases where more than one splitting symbol is missing,
it is necessary to extend the clause format. Suppose that Cy subsumes C>, but
the search state contains C; V a V 8. In that case C> has to be restored, when
either of a or B is derived. One could obtain this by replacing Cs by —a Vv Cs
and -8V C5. However, when there are many splitting symbols, this would result
in too many copies. For this reason, it is better to extend the clause format by
allowing negated disjunctions of splitting symbols. Using the extension, C5 can
be replaced by =(a V 8) V Cs. Each of the symbols a or 8 can restore Cy. Note
that only a minor extension of the clause format is needed. Negated disjunctions
need to be added only for splitting symbols, not for usual atoms. Both the
positive disjunctions of splitting literals, and the negative disjunctions can be
easily represented by bit strings, so they can be manipulated very efficiently.

If one does not want to extend the clause format, it is also possible to replace
Cz by

YV Oy, naVy, =BV,

where v is a new literal. However we think that it is better to make a small
extension to the clause format.

In the next section we formally define search state splitting, and we give a
couple of variants of splitting through new propositional symbols. After that,
in Section 3, we prove a general completeness result, that is general enough to
prove completeness of all types of splitting, combined with all restrictions of
resolution.

2 Splitting through New Symbols

We first define two variants of the splitting rule, usual splitting and extended
splitting. It is possible to add the negation of one of the branches in the other
branch. This is called extended splitting. Extended splitting is possible because
C; V Cs is logically equivalent with C; V (C2 A —=Ch).

Definition 1. Let C be a clause, not the empty clause. Let A be a literal in C.
The component of A in C is the smallest subset C; of C, s.t

— A€y, and
— if literals By, B have some variables in common, By € Cy1, By € C, then
By € C;.

Write C = C1 V Ca, where Cy are the literals of C' that are not in Cy. If Cs is
non-empty, then clause C1 V C2 can be split. Write I' for the remaining clauses
in the search state of the theorem prover.

— Splitting is obtained by replacing the search state I',Cy V Cy by two search
states I, Cy and I, Cs.

— Extended splitting is defined by replacing the search state by the two search
states I',Cy and I',~C1,Cs. In the second proof state, variables in =C} have
to be Skolemized.

The original search state is refuted if both of the split search states are refuted.
The original search state has a saturation if one of the split search states has a
saturation.

Note that our definition implies that C; cannot be split another time. It is
possible however that C> can be split another time. In practive, one does not
always split when it is possible, because search state splitting is costly. Spass
uses heuristics to decide whether or not a possible split should take place, and
whether extended or simple splitting should be used. Typically both components
need to contain non-propositional, positive literals. It is reported in [Wb01] that
extended splitting is not always better than non-extended splitting. See [Wb01]
for details. Next we define splitting through new symbols. We do this in two
ways. The first way is the way that we described in the introduction. The second
way tries to reduce the number of splitting symbols by exploiting dependencies
between them. We call this splitting with literal suppression.

Definition 2. We first define splitting without literal suppression. Let Cy V Cs
be a clause that can be split.

— Non-extended splitting replaces the clause by
CiVvB, —BVCs.
— FEzxtended splitting replaces the clause by
CivB, -BVC, —BV-Ch.
The negation of Cy has to be Skolemized.

If some clause has more than one split clause among its parents, it will
contain more than one splitting symbol. If one would split such a clause using
Definition 2, then one more splitting symbol will be added. The following way of
splitting makes it possible to drop other splitting atoms when a clause is split,
that already contains splitting atoms.

Definition 3. Let C; VC2 V oy V---V ap be a clause that can be split, where
oq,...,ap p > 0 are positive splitting symbols, resulting from earlier splits. We
define splitting with symbol suppression.

— Simple splitting replaces the clause by
01V,3, —|,3V02VO£1V"'VO£p,

—o VB,...,mop VB,
— FEzxtended splitting replaces the clause by

Clv,B, ﬁﬂVCgVCﬁV"'VCtp, —|,BV_|C'1VOC]_V"'VCMP,

—o VB, e, o VB

It may seem that the effect of splitting with literal suppression can be also
obtained by splitting C; VC2Voy V---Vay, into C1 VB and -fVC2Vay V- --Vay,.
However if the first clause resolves with a clause containing some of the a;, then
both the a; and 8 have to be kept in the resulting clause. If one has literal
supression, then any clause of form DV oy, V---V a;, V3 can be simplified into
DV 3, due to presence of the —a; V 8 clauses.

For all four ways of splitting, it can be easily verified that the clauses resulting
from the split imply the original clause. This does not imply completeness for
the case where splitting is done eagerly, but it does imply that splitting with
fresh literals can be done finitely often without losing completeness.

We will now prove that the four ways of splitting are sound. We do this
by proving that in each case there exists a first order formula F, which can be
substituted for 3, such that the resulting clauses become logical consequences of
the original clause. This makes the splitting rules provably sound in higher order
logic. This makes it possible to verify resolution proofs that use splitting through
new symbols, see [dNO1]. In first order logic, the splitting rules are satisfiability
preserving. Instead of substituting F' for 3, one can extend the interpretation
with 3, and copy the truth value for 8 from F.

Theorem 1. For all four ways of splitting, there exists a formula F which can be
substituted for B, s.t. the resulting clauses are logical consequences of the original
clause.

Proof. — First we consider splitting without literal suppression. For non-extended
splitting, one can simply take

,6 = 02.
For extended splitting, one can take
,8 = —lcl N 02.

— Next we consider splitting with literal suppression. For non-extended split-
ting, one can take
8= CzVOélv---Vap.

Substituting in the formulas that result from the split, gives
01 V(CzVOél V"'VOtp),
|(C2Va] V---Vap)VCQVal \/---Vap,

—|C\<1V(CzVC\ClV"-Vap),...,—!apv(CzVC\qV"'VOép).

The first formula equals C; V C2 V a1 V --- V a,. The other formulae are
tautologies.
In the case of extended splitting with literal suppression, one can take

ﬁ:= (—|Cl/\Cz)VO£1\/---Vap.

Substituting in the formulas, resulting from the split, gives
CiV(=CLAC)VaiV:---Vap,

—|((—101/\Cz)Voq\/---Vap)VCZVqu---Vap,
ﬁ((—|C’1 /\Cz)VOé1V"'Vap)V—|ClVC(1V"'VCkp,
—|Oél\/(—|01/\Cg)\/041\/"'VO(p,"',—'OZPV(—'C&/\02)V041V"'V06p.

It is easily checked that all of these formulas are tautologies or logical con-
sequences of C1 VCaVoy V-V ap.

3 A Meta Calculus

We prove a general completeness result, which applies to all splitting strategies
described so far. We do not want the result to be restricted to one calculus,
or to one type of redundancy. The completeness result has to be applicable to
all resolution decision procedures that need the splitting rule, and also to other
refinements of resolution, that are used for full first order.

One could try to give separate completeness proofs for the various calculi,
but this is too complicated. The completeness proofs are rather heterogeneous.
Some of them rely on the completeness of the superposition calculus ([BG01]),
others are based on the resolution game ([dN94]) or lock resolution. ([B71])

In order to obtain a general completeness result, we define a meta calculus
which extends some refinement of resolution (called calculus here) by adjoining
the splitting atoms to it. We then prove relative completeness: Every derivation,
that fulfills certain conditions, will either derive the empty clause, or construct
in the limit a saturation of the original calculus.

The rules of the meta calculus are obtained by modifying the rules of the
original calculus. When a rule of the original calculus is applied on clauses con-
taining splitting symbols, the resulting clause inherits the splitting symbols from
the parents in the meta calculus. Redundancy in the meta calculus is obtained by
combining the redundancy of the original calculus with propositional implication
on the splitting symbols.

It is necessary to keep the splitting symbols apart from the calculus literals.
Using the propositional redundancy techniques in full generality on all literals
would result in incompleteness.

Definition 4. We identify a calculus C by its derivation rules and its redun-
dancy rules. A calculus is characterized by an ordered tuple C = (A, D, R,e) in
which

— A 1is the set of clauses,

— D C A* x A is the set of derivation rules,

— R C A* x A is the set of redundancy rules. R must be reflexive and tran-
sitive. Reflerive means that R(a,a) for all a € A. Transitive means that
R(ai,...,an,a) and R(b1,-..,bi1,a,bi41,.-.,bm,b) imply

R(b17""bi—laala---aan;b'i-i-l""’bm’b)'

— e € A is the empty clause of C.

In examples, clauses of C will be between square brackets, to stress that we
see them as closed objects. For example, if one would have ordinary resolution
with subsumption, one would have

([p(X) v q(X)], [7p(X) V r(Y)]; [g(X) Vr(Y)]) € D,

([p(X,Y) V p(Y, X) V (X, Y)]; [p(X, X) V (X, X)] € D.

In R, one would have
(Ip(X) v ¢(X)]; [p(0) v q(0)]) € R,

([p(X)]; [p(f(X))]) € R-

The calculus C is considered on the predicate level. Clauses are not replaced
by their ground instances. However, since the clauses of C are closed objects, the
meta calculus is a propositional calculus.

All natural redundancy criteria are transitive, because they are based on
implication and on some ordering conditions.

There is no need to specify what the splitting rules of C exactly are. The
reason for this fact is that, as far as completeness is concerned, splitting can be
handled by redundancy. When a clause C; V C is split into C; and C2, both of
the components subsume the original clause.

The method can handle any form of splitting, as long as the clauses obtained
by splitting subsume the split clause. We are not concerned about soundness in
this section. The soundness of most of the possible ways of splitting has been
proven in Theorem 1.

Definition 5. A saturated set is a set M C A, such that for each set of clauses
a1,-.-,an, € M, (n>0) and clause a € A, for which

D(ay,...,an,a),

there are clauses b, ...,b, € M, (m > 0) such that

R(bl, ey bm, a).
A set M C A is a saturation of some set of initial clauses I if M is a sat-
urated set, and for each a € I, there are clauses ai,...,a, € M, such that
R(ai,---,am,a).

We use the letter M for saturations, because they play the role of models.
If the calculus C is complete, then M (in principle) represents a model of the
clauses it contains.
We now extend calculus C with splitting atoms:

Definition 6. Let C = (A, D, R,e) be a calculus. Let (X, <) be a well-ordered
set of propositional atoms, non-overlapping with any object in A. Clauses of the
extended calculus C* have form

(mo1V---V=aop)VaVrT.

It must be the case that a € A. It is possible that a = e. Facho; (1<i<p) isa
disjunction of splitting literals. If p > 0, then the clause is blocked by the sequence
(mo1,...,70p). If p=0, then the clause is not blocked. When the clause is not
blocked, we write aV T instead of ()V aV T.

The T is a disjunction of splitting atoms, representing the splitting context.
We assume that T is sorted by <, with the mazimal atom first, and that repeated
splitting atoms are deleted. If T is empty, we omit it from the clause.

Stmilarly we write (moq1 V ---V —0p) V T instead of (o1 V.-V —op) VeVT.
The empty clause of the extended calculus is the clause

()vev i,
where L is the empty disjunction.
Next we define the rules of the calculus C%.

Definition 7. The derivation rules D¥ of the extended calculus are defined as
follows:

CONTEXT: If D(ai,...,an,a) in the original calculus C, then for all splitting
contexts T1,...,Tn,

D¥(a1 VTi,...anV Tn,aV (L V-V 1)).

On clauses that are not blocked, we simply apply the rules of C. The splitting
contexts of the parents are collected into the splitting context of the new

clause.
RESTORE: Let
c=(no1V---V-oop)VaVrT

be a blocked C¥-clause with p > 0. For each i, 1 < i < p, let the clause c;
have form a; V ;. (It consists only of splitting atoms) It must be the case
that o; is the mazximal splitting atom of the clause a; V 7;. If each a; occurs
in o;, then we put D¥(c,c1,...,cp,d) for the C*-clause

d=aV((TVTV---VT1p).
Definition 8. The redundancy rule R¥ is defined as follows: Assume that
R(a1,1,--101,m1,01)5- -, R(Gk,1,5- - - Gk Ok)
in the original calculus C. If
=a1,1 VeV o my Vb, .o, mag1 VsV Sk, Vb, €1,...,0 FEC

in propositional logic, treating the clauses a;j, b; (1 <i <k, 1 <j <m;) as
propositional atoms, then
R*¥(c1,...,cn,0).

What this rule says is that the calculus C¥ inherits the redundancy from C
through propositional implication on the splitting literals. We give a couple of
examples in order to show that Definition 8 does what it is supposed to do:

Example 3. We show how R* handles subsumption. Let C be the simple resolu-
tion calculus. Clause p(X) V ¢(X) subsumes p(s(X)) V ¢(s(X)).
Then [p(X) V ¢(X)] makes [p(s(X)) V g(s(X))] redundant in R¥, because

=[p(X) v q(X)] V [p(s(X)) V q(s(X))], [p(X) V ¢(X)] [= [p(s(X)) V q(s(X))]-

Similarly [p(X) V ¢(X)] V @ makes [p(s(X)) V q(s(X))] V o redundant, because
of the propositional implication

—[p(X) v q(X)]V [p(s(X)) V q(s(X))], [p(X) Vg(X)]Val=

[p(s(X)) V a(s(X))] V e
In the presence of [p(X)Vg(X)]Va, it is possible to replace [p(s(X))Vg(s(X))] by
)

—aV[p(s(X)) Va(s(X))], because [p(X) Vq(X)]Va and -V [p(s(X))Vq(s(X))]
make [p(s(X)) V ¢(s(X))] redundant in R*. This fact follows from the following

propositional implication
—[p(X) v g(X)] V [p(s(X)) V g(s(X))],
[p(X) V a(X)] V a, —aV [p(s(X)) V a(s(X))] = [p(s(X)) V a(s(X))].
The following example demonstrates how R handles simplification:
Ezample 4. T C is the superposition calculus, then the clauses
e =[s(X) ~ X]Vaand ¢, = [t(Y) # Y]V B
can simplify d = [p(s(X), ¢(Y))] into
dy = [p(X,Y)]VaVpand ds = ~(aV §) V [p(s(X), {(Y))]-

In order to justify this simplification, we need to show that c¢;,c2,d;, d2 make d
redundant in C*. This follows from the implication

~[s(X) & X]V [(Y) & YTV =[p(X, V)]V [p(s(X), t(V))],
[s(X) ~ X]V a, [t(Y) ~ Y]V B,
(X, Y)]V aV B,~(aV B) V [p(s(X), H(Y))]
[p(s(X), t(Y))].

The following example shows how Definition 8 handles splitting through fresh
literals.

Ezample 5. Suppose we want to split p(X) V ¢(Y). Both p(X) and ¢(Y) make
p(X) V ¢(Y) redundant in the original calculus C. Because of the implication

~lp(XO]V [p(X) VoY), —la(V)] Vv [p(X) v g(Y)],

[P(X)]Va, maV[q(Y)] E
[p(X) V q(Y)],
the clauses p(X) V a and —~a V ¢(Y) make p(X) V ¢(Y) redundant in R*.

The last example gives a simplification that is allowed by Definition 8:
Ezxzample 6. Suppose there is a clause
(mo1 V---V=aop)VaVrT,

and one of the splitting symbols in 7 occurs in one of the o;. Call this splitting
atom «. Then the clause can be replaced by

o1 V---VagiV---V-ag,)VaVT.
7 V4

where o} is obtained by deleting a from o;. If o} is empty, then the clause can
be removed completely.

It is clear that all variants of Definition 2 and Definition 3 can be handled,
because the clauses resulting from the split logically imply the original clause.

Definition 9. A saturated set M* C A¥ of C¥ is defined as follows:

— For each clause c, which is derivable by rule CONTEXT from clauses ci,...,c, €
M?Z, there are clauses d1,...,dyn € M*, such that

R¥(dy,...,dm,c).

— For each clause ¢, which is derivable by rule RESTORE from clauses ¢y, . ..,¢, €
M?Z% | there are clauses di,...,d, € M?% that do not contain negative X-

literals, and
R*¥(d1,...,dm,c)

A set M*¥ C A% is a saturation of some set of initial clauses I* C A% if it is a
saturated set of C¥ and for each c € I”, there are dy,...,dy, € M*, such that

R¥(dy,...,dm,c).

It is necessary to restrict R¥ in the definition of a saturated set, because the
full combination of D¥ and R*¥ would have been incomplete, even when C is
complete.

Theorem 2. If C¥ has a saturation that does not contain the empty clause,
then C has a saturation not containing the empty clause.

Proof. Let M* be a saturation of C¥.

We construct an interpretation M = M; U Ma, s.t. M; consists of XY-atoms,
M, consists of clauses from A, and all clauses of M¥* are true in M. A clause
(mo1 V.-V =0p) Va VT is true in M, if one of the following holds:

— For one of the o;, none of the literals in o; occurs in Mj.

— There are clauses a1,...,a,, € M, that make a redundant in the original
calculus.

— One of the symbols of 7 occurs in Mj.

First put
C; ={ce M¥ | chas form () VeV T}

These are the clauses containing only positive atoms from Y. Next put
Cy ={ce M¥ |chasform ()VaVo and a # e}.

We construct the set M; from a sequence Xy, X',... The set of symbols X
is well-ordered by < . Let k; be the ordinal length of < on Y. Write o, for the
A-th element of X/, based on < .

— For a limit ordinal A, put X = Uu<>\ %, This implies that Xy = { }.

— For a successor ordinal A + 1, put X131 = X\ U {ox} if there is a clause of
the form (o) V 7) € C1, in which o) is <-maximal and o) V 7 is false in Y.
If there is no such clause, then put X3 = Y.

— Finally put My = X}, .

Each clause C; is true in M; and for each symbol ¢ € M; there is a clause
c € (1, such that ¢ is the maximal literal in ¢, and o is the unique true literal
of c.

M, is constructed essentially similar to M;, but there is no need to do an itera-
tion, because every clause contains at most one clause from A. Let

My ={al|()VaVrTeC(y, and 7 is false in M;}.

We want to show that all clauses in M ¥ are true in M. For the clauses of
C1 and (s, this is immediate. For the remaining clauses, we use the following
argument: Let ¢ be a clause of form

(mo1V---V=o,)VaVT,

with p > 0. Suppose that all o; are true in M;. For each ¢;, there is a symbol
a; € X, such that a; € M;. There must be clauses

(e%] VT1,...,O£pVTp,

s.t. each a; is maximal in «; V 7;, and each 7; is false in M;. By rule RESTORE,
one can derive
d=aV(TVrV---V1p).

There are clauses by, ..., b, € C1 UCs, which are true in M, s.t.
D*(by,...,bm,d).

Because of this, d must be true in M. Since none of the 7; is true, a V 7 must be
true in M. This makes
(o1 V- Vo) VaVvT

true.

It remains to show that Ms is a saturated set of C and that My does not contain

e. Clearly, by the way M, is constructed, e & Mo.

Suppose that there are clauses ay, . . ., an, € Ms from which an inference R(a1, ..., an,a)
is possible. There are clauses a; V71, ...,a, V7, € M* for which the 7; are false.

By rule CONTEXT, it is possible to derive

aV(rV---V,).

If we can prove that this clause is true in M, then we are ready, because then a
must be true. If a is true there must be clauses in M5, that make it redundant.

Because M7¥ is a saturated set of C¥, there are clauses di,...,d, € M?%,
which make aV (11 V - -+ V 7,) redundant. The clauses di, .. ., d,, are true in M.
By definition of redundancy, there exist C-clauses

al,la-"aal,mlabla"'aak,ly-"aak,mk7bka
such that
R(al,l,...,al,ml,bl),...,R(ak,l,...,ak,mk,bk),
and
—ay1 VooV aarm, Vb, .o, a1 Vo Voag m, Vb,

di,...,dm EaV(mV---V1)

in propositional logic.

We know already that the clauses d, ..., d,, are true in M. The other clauses
—aj1 V-V oagm; Vb (1 < j < k) are true by the fact that R is a transitive
relation. From this it follows that a V (71 V - -+ V 73,) is true.

4 Conclusions

We have presented a way for simulating search state splitting by splitting through
new symbols. The method preserves redundancy elimination, what is particularly
important if one is looking for a saturated set.

In our method negative splitting literals are always selected, so that they
block the clause. In [RV01], an interesting alternative was introduced: Simply
use an A-order which makes both the positive and the negative splitting atom
minimal. In this way, different splitting branches are explored in parallel. Differ-
ent branches cannot interact, because any inference between clauses of the form
C1 Va and C3 V —a will result in a tautology. It would be interesting to see
if our method of redundancy elimination could be combined with this style of
splitting.

5 Acknowledgements

The author became aware of the problem with splitting through proposition
symbols after a discussion with Ullrich Hustadt. Harald Ganzinger read a draft
version. The present presentation has benefitted from his comments.

References

[BFL94]

[BGO1]

[B71]

[FLTZ93]

[GNN9S]

[GdN99]

[HANS00]

[dN94]

[dN00]

[ANPHO1]

[NRO17]

[dNO1]

[NWO1]

[RVO1]

[Wh01]

Baaz, M., Fermiiller, C. Leitsch, A.: A non-elementary speed up in proof
length by structural clause form transformation, In LICS 94.

Bachmair, L., Ganzinger, H.: Resolution Theorem Proving, pp. 19-99, in
the Handbook of Automated Reasoning, 2001, Edited by A. Robinson
and A. Voronkov, Elsevier Science, Amsterdam, the Netherlands.

Boyer, R.S.: Locking: A Restriction of Resolution (Ph. D. Thesis). Uni-
versity of Texas at Austin, (1971).

Fermiiller, C., Leitsch, A., Tammet, T., Zamov, N.: Resolution Methods
for the Decision Problem. LNCS 679, Springer Verlag Berlin Heidelberg
New York, (1993).

Ganzinger, H., Nieuwenhuis, R., Nivela, P., The Saturate System,
www.mpi-sb.mpg.de/SATURATE/Saturate .html, 1998.

Ganzinger, H., de Nivelle, H.: A superposition procedure for the guarded
fragment with equality. LICS 14, IEEE Computer Society Press, (1999),
295-303.

Hustadt, U., de Nivelle, H., Schmidt, R.: Resolution-Based Methods for
Modal Logics, Journal of the IGPL 8-3, (2000), 265-292.

de Nivelle, H.: Resolution Games and Non-Liftable Resolution Orderings,
in Computer Science Logic 1994, Selected Papers, (1995) pp. 279-293,
LNCS 933, Springer Verlag.

de Nivelle, H.: Deciding the E+-Class by an A Posteriori, Liftable Or-
der. Annals of Pure and Applied Logic 104-(1-3), (2000), pp. 219-232,
Elsevier Science, Amsterdam.

de Nivelle, H., Pratt-Hartmann, I.: A Resolution-Based Decision Proce-
dure for the Two-Variable Fragment with Equality, Proceedings IJCAR
2001, Springer Verlag (2001), 211-225.

de Nivelle, H., de Rijke, M.: Deciding the Guarded Fragments by Resolu-
tion, to appear in the Journal of Symbolic Computation.

de Nivelle, H.: Translation of Resolution Proofs into Higher Order Natural
Deduction, 2001, unpublished, to appear.

Nonnengart, A., Weidenbach, C.: Computing Small Clause Normal Forms,
pp. 335-370, in the Handbook of Automated Reasoning, 2001, Edited by
A. Robinson and A. Voronkov, Elsevier Science, Amsterdam, the Nether-
lands.

Riazanov, A., Voronkov, A.: Splitting Without Backtracking, Preprint of
the Department of Computer Science, University of Manchester, CSPP-
10.

Weidenbach, C.: SPASS: Combining Superposition, Sorts and Splitting,
pp. 1967-2012, in the Handbook of Automated Reasoning, 2001, Edited
by A. Robinson and A. Voronkov, Elsevier Science, Amsterdam, the
Netherlands.

