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Abstract

Partial functions are abundant in mathematics and program specifica-
tions. Unfortunately, their importance has been mostly ignored in au-
tomated theorem proving. In this paper, we develop a theorem proving
strategy for Partial Classical Logic (PCL). Proof search takes place in
Kleene Logic. We show that PCL theories can be translated into equiva-
lent sets of formulas in Kleene logic. For proof search we use a three-valued
adaptation of geometric resolution. We prove that the calculus is sound
and complete.

Keywords: Automated Theorem Proving, Partial Functions, Three-Valued Logic,
Sequent Calculus, Finite Model Search.

1 Introduction and Motivation

Partial Classical Logic (PCL) was introduced in [8] with the goal of being able
to deal with rich type systems and partial functions. Since the preconditions of
partial functions can be complicated, as complicated as the proof itself, the pre-
conditions have to be expressed in the same language as the reasoning problem.

A second design aim of PCL is that there should be no distinction between
preconditions and types. For example, if P is a pointer type and p has type
P, then retrieving xp is possible when p is not the null pointer. One can either
treat the type of N non-null pointers as a subtype of P, and treat x as a total,
unary function on N, or treat x as a partial function on P that is defined when
p # 0. The resulting semantics should be the same.

This is in contrast with existing formalisms for partial functions that start
with an underlying, simple type theory, and add partial functions by allowing
functions to have preconditions expressed by logical formulas. This approach
is followed in [12], [13]. In PCL, both the underlying type theory and the
preconditions, are expressed in the same way by logical formulas. Figure 1 gives



Figure 1: A Simply Typed Theory
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Figure 2: Specification of Subtraction
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an example of a simply typed theory, expressed in PCL. Formulas in the same
row have the same meaning. We assume that = is properly axiomatized. Type
conditions connected to universal quantifiers are relativized by implications. In
order to obtain type strictness, a lazy implication operator [A]B is used. There
also exists a lazy conjunction operator (A)B that is used in combination with
existential quantifiers.

When the formulas involved are well-typed, [A] B has the same semantics as
A — B in untyped, classical logic. In order for [A]B to be well-typed, the first
argument A must be well-typed. When A is true, the second argument B has
to be well-typed. The last formula in the example can be replaced Vay N(z) A
N(y) = = + S(y) = S(x + y) without changing the meaning, but only because
it is well-typed. If the formula would not have been well-typed, we would have
replaced a meaningless formula by a formula that probably means something
unwanted. This is the general reason why typing exists: Type systems and the
possibility to enforce preconditions of partial functions are features that make
it easier to write down correct formulas because they allow separate checking.
Typing does not increase the strength of what can be meaningfully expressed
in the logic, because typing conditions can always be relativized. The situation
is similar to type systems in programming languages: Type systems do not
make more programs possible, but they make it easier to write correct programs
because they provide automatic checking. A programmer who never makes
mistakes does not need type checking.
In Example 2, a predicate < and a partial function (—) were added. The



Figure 3: Formalization of List
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predicate < is defined everywhere on N. The function (—) is defined only when
the first argument is not smaller than the second. In the row where — is declared,
the left and the right column in Figure 2 are not equivalent anymore. In the
right column, the precondition of (—) can be expressed. It follows from the
axiomatization of <, that for every occurrene of t; — to, it is possible to prove
to < t1. If one would want to express the precondition of (—)in the left column,
one would have to extend the language with a formalism for expressing the
precondition. This causes the type system to be different from the language
in which preconditions are expressed. This was done e.g in [12], [13], [14], or
[7]. Alternatively, one can relativize the precondition using —, but if one does
s0, one looses the possibility to have it typechecked. In the right column, type
conditions are preconditions can be stated together, and they will be enforced.

Figure 3 contains a formalization of a list datatype. The first two formulas
introduce a datatype D and a type of lists L. Formulas (5) and (6) state that L
can be partitioned into L,, (nil), and L. (lists constructed by cons.) Formula (10)
defines the functions first and rest as partial functions that are defined on L.
The pattern of Example 3 can be applied to all inductively defined types. Every
inductive types has subtypes that correspond to the constructors and partial
selector functions that are defined only for terms that are constructed by a
given constructor. Using Example 3, one can check type correctness of the
formula A =

nil

[ m = nil | append(L, M)
L, M) = cons(first(l), append(rest(l), m))

Vim [Lm)AL() ] () 2 il | append(L, M)

which is the translation of the program

define append(l,m)
if [ = nil then return m
else return cons( first(l), append(rest(l),m) ).

Using the specification in Example 3, it is possible to prove #A, where A is



the formula above. In order to prove type correctness of the second part of
A, one has to prove that m = nil implies L.(m), in order to be able to apply
first and rest on L. The formula A can be translated into classical logic, by
replacing [ | by — . This formula means the same, only because it is well-typed,
but it would mean something unwanted if A would contain type incorrectness
or ignored preconditions. Dependent on the mistake made, this may result in a
specification that is stronger than intended, and which may be hard to detect.

2 Introduction to PCL

In this section, we will introduce the semantics of PCL, and provide a sequent
calculus. We do this not only to make the paper self-contained, but also because
there have been changes in the semantics and the sequent calculus for PCL since
[8]. The changes were motivated by experience with the use of PCL in interactive
systems, and by insights that were obtained when writing the current paper.
The transformation to Kleene logic that is used in this paper for automated
theorem proving, and which is based on widening (Definition 2.15), can also be
used for defining a sequent calculus. The resulting sequent calculus has simpler
rules than the calculus that was used in [8]. Since it is closely related to the
theorem proving method, it is suitable to introduce it together.

In addition to the changes in the sequent calculus, there has been changes in
the semantics as well: In earlier versions of PCL, we believed that all type infor-
mation should be expressed by user defined predicates, and as a consequence, the
Boolean truth values could be mixed with the domains of discourse introduced
by the user. It was left to the user to define predicates that separate the different
types. There was no syntactic distinction between atoms and terms, and Prop()
was viewed as a predefined function symbol, that could be applied on every ex-
pression. This approach led to a couple of artefacts, that are hard to handle by
deduction rules, and which at the same time are not meaningful. For example,
it was possible to write the formula Jzix2 Prop(zi) A Prop(ze) — 1 % 9,
which is valid, because there are two distinct Booleans in every interpretation.

Our current view is that such formulas should not be allowed. If the user
wants to use a Boolean data type, this datatype should be defined by the user,
and it should be separate from the truth values used by the logic. Hence, we will
distinguish atoms and terms, and Prop will become a unary logical operator,
similar to negation. A consequence of this modification is that we can reduce
the number of error values to one. In [8], it was necessary to allow multiple error
values, in order to avoid that =Prop(a) A =Prop(b) — a = b is a tautology. But
since this formula cannot be stated anymore, there is no need to worry about
its truth. To reflect the fact that Prop() is not a function but a logical operator,
we will write #A instead of Prop(A).

The calculus that we will define in this paper is called Seq%c 1,- The calculus
that was used in [8] was called Seqs . The main difference is as follows: Since
PCL has quite a few logical operators, both calculi use reduction rules to replace
most of the operators by a small set of operators. In this way, reasoning rules



need to be defined only for some primitive operators. A similar approach is
often used in classical logic. If one defines a rewrite rule that replaces A — B by
= AV B, then one does not need reasoning rules for — anymore. The rewrite rules
of SequCL were truth-value preserving. During the development of theorem
proving strategies, it turned out that one can obtain a better calculus if one
uses widening (defined in Definition 2.15) instead of truth equivalence. The
resulting calculus has fewer reasoning rules, and the reasoning rules are simpler.
Since we use notation =< for the widening relation, the new calculus is Squc I

We will first define the formulas of PCL. After that, we define the semantics,
and the notion of context.

Definition 2.1. We first define terms: If f is a function symbol with arity
n >0, and ty,...,t, are terms, then f(t1,...,t,) is a term as well.
Using terms, we define the set of formulas as follows:

o | . FE and T are formulas.
o Ift1 and ty are terms, then t1 = ts is a formula.

o If p is a predicate symbol with arity n > 0, and t1,...,t, are terms, then
p(t1,...,tn) s a formula.

o If F is a formula, then —F and #F are formulas.

e If F and G are formulas, then FV G, FANG, FF — G, and F < G are

formulas.
o If F and G are formulas, then (F)G and [F|G are formulas.
o If F is a formula, and x is a variable, then Yx F and 3x F are formulas.

We use = for equality in formulas, in order to distinguish it from meta equal-
ity, so that we can write ‘I(t; = t3) = t’. We define three-valued interpretations:

Definition 2.2. An interpretation is an object of form I = (D,f,e,t,[]),
where £,e,t are distinct objects. The function [ | interprets function symbols as
functions from D™ to D and predicate symbols as functions from D™ to {f,e,t},
in accordance with the arity of the symbol.

Definition 2.3. Let I = (D,f,e,t,[]) be an interpretation. Starting with | |,
we define the interpretation function I(), that interprets all terms and formulas.

o If f is a function symbol of arity n, and t1,...,t, are terms, then
ICf (s stn) ) = I (), - I ().
o If p is a predicate symbol of arity n, and t1,...,t, are terms, then

I(p(t, .. t) ) = [P)(I(t), - ... I(tn)).
o I(L)=f, I(E)=e, and I(T) = t.



Figure 4: Semantics of Logical Operators

e The semantics of — and # is defined by the following truth tables:

e The semantics of the strict operators V, A,— and <« is defined by the
following truth tables:

flel|t fle|f t|lel|f t|le|t
V:le|le]|e A : e ~ e | e —: | e|e| e
t|lel|t flel|t flel|t flel|t

e The semantics of the weak operators { ) and [ ] is defined by the following
truth tables:

f|f|f t|t|t
(Y:]ele|e []:]e|le]|e
flelt flel|t

e The semantics of the quantifiers is defined by the following preferences:

V:ie>f>t, d:e>t>f.

e For a unary propositional operator , the interpretation of I(xA) is defined
as the value in the corresponding table in Figure 4, using the value of 1(A)
in the order f,e,t.

e For a binary propositional operator %, the interpretation of I(A x B) is
defined as the value in the corresponding table in Figure 4. The row is
determined by the value of I(A) in the order f,e,t, and the column is
determined by the value of I(B), also in the order f,e,t.

e [or a quantifier Q, the value of I(Qz F') is obtained as follows: First define
Rrp ={I7(F) | d € D}. Then I(Qz F) is obtained by selecting from Rp

the most preferred value using the preference list for Q in Figure 4.

In PCL, theories are constructed in contexts. A context is a mixture of
assumptions and theorems. The order of formulas in a context is essential,
because theorems must be provable from the formulas that occur before them,
and types of functions and predicates have to be specified before they are used.
Contexts play the role of the first component of Seq; -sequents in [8].



Definition 2.4. We call an object of form ||I'1,...,Tyll, in which T'; (m > 0)
are formulas, and in which some of the I'; are possibly marked with a ¥, a
context.

Formulas that are marked with ¥ denote theorems, which means that they are
provable from the formulas that occur before them. Unmarked formulas are
assumptions.

Example 2.5. || #A, #B, A, B, (AAB)Y || is an example of a context. The
formula (A A B)? is marked as theorem, which is correct, because it is provable
from the formulas A and B. The formulas A and B can be assumed because #A
and #B occur before them.

Definition 2.6. Let ||T|| be a context. We say that ||T|| is strongly valid if in
every interpretation I, for which there is an i, s.t. I(T;) # t, the first such i
satisfies the following condition:

o T'; is not marked as theorem and I(T';) = f.

Strong validity captures the intuition that theorems must be provable from
the formulas before them, and assumptions must be well-defined assuming the
formulas before them. The following theorem, which is a generalization of The-
orem 1 in [8], confirms this.

Theorem 2.7. The context ||T'1,...,Tp is strongly valid iff for every inter-
pretation I, for every i (1 < i < m), the following holds:

o IfT; is not marked, then I(T'y) = --- = I(T';_1) = t implies I(T';) € {£, t}.
o IfT; is marked, then I(T'1) = --- = I(T;_1) = t implies I(T';) = t.
Proof. First assume that ||I'1,..., 'y, || is strongly valid. Assume that I is an
interpretation and that I(I'y) = --- = I(I';_1) = t. If T'; is not marked, then by

definition of strong validity, I(I';) # t = I(I';) = f, so that I(I';) € {f,t}. If T
is marked, then it follows from the definition of strong validity, that it cannot
be the case that I(T';) # t. Hence we have shown that I(T';) = t.

Now suppose that the converse holds. We must show that ||T'y,..., Ty, || is
strongly valid. Assume that there exists an ¢, s.t. I(T';) # t. We can assume
that ¢ is minimal. If I'; is marked, then we have obtained a contradiction with

I(Ty)=---=1I(T;—1) =t = I(T';) = t, so that it follows that I'; is not marked.
If T; is not marked, then we have I(I'1) = --- = I(I';_1) = I(I';) € {f,t}, so
that we have shown that I(T;) = f. O

Example 2.8. The context | A, B, (A A B)? || is not strongly valid, be-
cause Definition 2.6 is not met by I with I(A) = e, I(B) = t. The context
| #A, A, B, (AAB)? | is still not strongly valid, because it is possible that
I(B) = e, which would make B with I(B) # £ the first formula with I(B) # t.

In order to make the context strongly valid, we also have to add #B, so that
we get | #A, #B, A, B, (AANB)” |.



Example 2.9. The contest | G(s), Yz G(z) — M(z), M”(s) || is not strongly
valid, despite the fact that G(s), Yo G(x) — M (x) implies M(s).

In order to make the context strongly valid, one has to make sure that pred-
icates G and M (Greek and Mortal) are always well-defined:

| Vo #G(z), Vo #M(z), G(s), Vo G(x) — M(x), Mﬁ(s) II.

The predicates G and M are currently too general. In order to be more realistic,
they can be restricted to be subpredicates of a predicate H (Human):

Vo #H(z)
Vo H(x) = #G(x)
(H(s)) G(s)

If the formula (H(s)) G(s) would be replaced by H(s) A G(s), the resulting
context would be not strongly valid anymore, because one can have I(H(s)) =
f, I(G(s)) = e, while making all the formulas before it true.

Similarly, replacing Va [H(z)] G(z) — M(x) by Vo H(x) A G(x) — M(z)
would make the context not strongly valid anymore, because there could exist a

term t with I(H(t)) = £, I(G(t)) = e.

Our goal in the current section is to describe the sequent calculus Squc L)
which is an improvement of Seqp ;. Calculus Seqs; is based on Theorem 2.7,
which makes it possible to replace a context by a set of standard implications,
which can be proven by traditional means. The calculus Sequc 1, is based on a
stronger equivalence, which we will prove shortly.

Definition 2.10. A sequent is an object of form S L, in which S is a set of
formulas.

Definition 2.11. We call a set of formulas S unsatisfiable if for every interpre-
tation I, there is a formula A € S, s.t. I(A) #t. We say that a set of sequents
{S1F L, ..., S, F L} represents a property P if P < all S; are unsatisfiable.

Definition 2.12. Let |T'|| = ||T'1,..., Il be a context. The sequent expansion
Seq( [[T']| ) of [IT'[| is defined as U1gigm E( (T, i)Uulgigm Ey(||T]], ), where

o BT, 4) ={{Ty,...,Tica, ~(#9)} - L }.

o Ey( |IT|l, ) = { {T1,...,Ti_1, I} H L } if Ty is marked as theorem,
and { } otherwise.

It is clear that Definition 2.12 is inspired by Theorem 2.7. For unmarked T';,

the set E(||T||,7) represents the property I(I'1) = --- =I(I'i_1) =t = I(T;) €
{f,t}. For marked T;, the set E(||T||,7) U Ey(||T||,%) represents the property
ITy) = - = I(T'i—1) =t = I(T;) = t. It follows immediately from The-

orem 2.7 that Seq(||T'||) represents the property ¢||T'|| is strongly valid’. The



sequent calculus Sequc ;, used this equivalence. It has a rule called ‘Exten-
sion’, by which, in a somewhat untransparant fashion, one could construct the
expansion. The reasoning rules

SiEL - S L
SEL

of Sequc 1, breserve unsatisfiability, which means that for every rule, S is un-
satisfiable iff all S; are unsatisfiable. The further design of Seqp;, is standard.
It was presented as a sequent calculus, but it can be presented as a tableau
calculus as well.

We will now introduce a new calculus called Sequgc 1, which is based on the
observation that Seq(||T'||) represents validity of ||T'|] in a strong fashion. We
will first define strong representation, then prove that it holds, and after that,
introduce the calculus. We will also explain why Squc 1, is better than Se(ﬁpc L

Definition 2.13. We say that a set of formulas S is strongly unsatisfiable if
for every interpretation I, there is a formula A € S, s.t. I(A) =f.
We say that a set of sequents S1 + L,...,S, F L strongly represents a

property P iff
1. P s true implies that all of the S; are strongly unsatisfiable.
2. P is false implies that (at least) one of the S; is satisfiable.

Theorem 2.14. For every context I', the sequent expansion Seq(||T||) strongly
represents the property that ||T|| is strongly valid.

Proof. We first prove (1) of Definition 2.13. Assume that ||T'|| is strongly valid.
Write ||T|| = ||T'1, ..., Ti||- Let T be an arbitrary interpretation. If there exists
an i € {1,...,m}, st. I(T;) # t, then let i be the smallest such number.
Otherwise, leave ¢ undefined.

Let S F L be a sequent that occurs in Seq(||T']]). Let A be the level on
which S F L was introduced. We have to show that there exists an A € S, s.t.
I(A) =f.

e If i is undefined or A < ¢, then we have I(T'y) = I(#I'y) = t, so that
I(-Ty) = I(~#Tx) = £. If (S L) € B( |7, \), then =#T' € S, so that
one can take A = =#\. If (S L) € Ey(||T]|, A), then —=T'y € S, so that
one can take A = —T'y.

o If ¢ is defined and A = 4, then it follows from the definition of strong
validity, that T; is not marked. This implies that Ey( ||T]|, ) = 0, so that
(SEL)e E(|T], 7). By strong validity of ||T'||, we know that I(T;) = f,
so that I(—#T;) = f as well. Since ~#I'; € S, we can take A = —#T;.

o If i is defined and A > ¢, then it follows from strong validity of ||T||,
that I(T';) = £. We have either (S - L) in E( ||T'], A), or (SF 1) in
Es( |IT]], A). In both cases, we have I'; € S, so that we can take A =T;.



Next we prove (2) of Definition 2.13. Assume that ||T'|| is not strongly valid. This
means that there exist an interpretation I and an i, s.t. I(I';) # t, where the first
such ¢ has either I(I';) # f, or I'; is marked. This can be reformulated as either
I(T';) = e, or I(T'y) = f and I'; is marked. In both cases, A <i = I(T')) =t.

o If I(T';) = e, then I(—#T;) = t. It follows that all formulas in the premise
of {T'y,...,T;—1,~#T;} b L are true in I. Since this sequent is included
in E( ||T||, ), the proof is complete for this case.

e If T'; is marked and I(T';) = f, then I(—I';) = t. It follows that all formulas
in the premise of {I'y,...,T;_1,-T;} F L are true in /. Since this sequent
is included in Ey( ||T']|, ), the proof is complete.

O

The advantage of strong representation is that it makes it possible to ignore
error values during proof search. Either, it is possible to make all formulas in all
sequents true, or there always is a false formula in some sequent. A calculus that
is based on standard unsatisfiability has to preserve error values during proof
search, since otherwise it might replace an unsatisfiable sequent by a satisfiable
sequent. A calculus based on strong representation can ignore error values. We
prove that error values can be ignored:

Definition 2.15. We define the widening relation =< as follows: A =< B if in
every interpretation I, we have

I(A)=f = I(B)=f,
I(A)=t = I(B)=t.

We write A= B if A X B and B <X A. It can be easily checked that A = B
iff I(A) = I(B) in every interpretation I. In this case, we call the formulas
equivalent.

Theorem 2.16. Let {S1F L, ..., S, b L} be a set of sequents that strongly
represents a property P. Let A and B be two formulas with A < B.

Let {S1+ L, ..., S/ - L} be obtained from {S1 + L, ..., S, b L} by
possibly replacing some occurrences of A by B.

Then {S7F L, ..., S| = L} strongly represents property P as well.

Proof. First assume that P is true. In that case all .S; are strongly unsatisfiable.
Let I be an interpretation. Let S; be one of the Sy, ..., S,. By Definition 2.13,
S; contains a formula C' with I(C) = f. If still C € S, then we are done.
Otherwise, it must be the case that C' = A and B € S!. Since A < B, it follows
that I(B) =f.

Next assume that P is false. This implies that one of the S; is satisfiable,
which means that there is an interpretation I, in which all formulas of S; are
true. We show that all formulas in S are true in I as well. Let C be a formula
in S{. If C € S;, then we are done. Otherwise, we have C'= B and A € S;. Since
I(A) =t and A < B, we have I(B) = t, so that the proof is complete. O

10



Figure 5: Semantics of Kleene Operators

e The semantics of the binary operators ® and & is defined by the following
truth tables:

f|f|f flel|t
® f e @D : e |t
flel|t t |t |t

e The semantics of the quantifiers IT and ¥ is defined by the following pref-
erences:
II:f>e>t, Yit>e>f.

The calculus Sequc 5, is based on the fact that the natural sequent rules for
Kleene logic preserve strong representation, in combination with the fact that
all PCL operators can be widened into their corresponding Kleene operators
by simple replacement rules. The result is a calculus that does not have many
reasoning rules, and that is easy to use. We will use the notation ® for Kleene
conjunction, @ for Kleene disjunction, II for Kleene universal quantification,
and ¥ for Kleene existential quantification.

Definition 2.17. We extend the set of formulas, defined in Definition 2.1, with
two binary operators and two quantifiers as follows:

o If F and G are formulas, then FF @ G and F & G are formulas as well.
o If F is a formula and x is a variable, then Ilx F and Xx F are formulas.

We extend the interpretation of formulas, defined in Definition 2.3, by the tables
i Figure 5.

Theorem 2.18. For every rule of Figure 6, that is written as A <X B, it is
indeed the case that A < B. For every rule that is written as A = B, it is indeed
the case that A = B.

We can now define the deduction rules of Sequc - The rules are listed in
Figure 7. We will prove that backward application of a deduction rule on a
sequent preserves strong representation. In order to do this, we first prove the
following property:

Theorem 2.19. Let SURlFé’U'}é’,’_fURPFL be one of the deduction rules of Fig-
ure 7.

1. If SUR is satisfiable, then there is an i (1 < i < p), s.t. SUR; is
satisfiable.

2. If SUR is strongly unsatisfiable, then for every i (1 <i <p), SUR; is
strongly unsatisfiable.

11



Figure 6: Kleening Rules of Sequc I

Rules for PCL operators (left) and NNF rules (right):

ANB =< A®B -l
AvB =X AeB -F
A—-B < -A®¢B =T
A<+ B =X (mAVB)®(AV-B) -—A
[A]B = -A@B -(A@® B)
(A)B = A®B -(A® B)
Ve Flz] =< Tz Flz] -( Oz F|
Jz Flz] = Xz Flx] -( Xz F]
Rules for #:
#T = 7T #(AANB) = #A
#E = 1 #(AvB) = #A
#1 = 7T #(A—B) = #A
#(~A) = 44 #AoB) = #A
W) o= T 2([AB) = #4
WV Flr)) = Te#Fl]  #((AB) = #4
#( 3z Flz]) = Tz #F]x] #t1=t) = T

Radicalization Rules:

A = #ARA
A = ~(#A) @A

12



Figure 7: Deduction Rules of Sequc I

Axioms
S, LF1 S, A -AF L S, ~(t=t)F L
Equivalence
S, BF L1 S, -BF L
S, Ak L S, "AF L

(A < B or A = B must occur in Figure 6)
Rules for ® and ®

S, Ak L S, BF L S, A, BF L
S, A®BF L S, A®BF L

Rules for ¥ and II

S, Ply|F L S, P[t], Iz Plx]F L
S, Ya Plz]F L S, Nz Plz]F L

In the ¥ rule, y must be not free in S or P[z]. In the II rule, ¢ denotes an
arbitrary term.

Equality

S, t1 = to, A[tg] FL
S, tl ~ tQ, A[tl] FL

Cut

S, ~(#A)FL S AL S, A-L
SF L
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Proof. We first fix some notation that will be used throughout the proof. For
a set of formulas S, we write I(S) =t if for every A € S, I(A) = t. We write
I(S) =f if thereisan A € S, s.t. I(A) = f. We will not give proofs for all rules,
because some of them are very similar.

Axiom: Consider the first axiom, so that we have p = 0 and R = {_L}. The set
of formulas S U {L} is not satisfiable, so that we may assume that there
isan 1 <17 <p,s.t. SUR,; is satisfiable, when it happens.

Since there are no ¢ with (1 <4 < p), we may assume that each S U R; is
strongly unsatisfiable.

The other two axioms are similar.

Equivalence: It can be easily checked that A < B implies A < —B. This

means that in both cases, we can assume that the rule has form gﬁ}g%

If SU{A} is satisfiable, then there is an interpretation I, s.t. I(S) =
I(A) = t. Since A <X B, we also have I(B) = t, so that S U {B} is
satisfiable as well.

Now assume that S U {A} is strongly unsatisfiable. Assume that I is an
interpretation. If 7(S) = f, then we are done. Otherwise, it must be the
case that I(A) = f, by strong unsatisfiability of S U {A}. Since we have
A =< B, we also have I(B) =f.

@: Assume that S U {A @ B} is satisfiable. This means that there is an
interpretation I, s.t. I(S) = I(A @ B) = t. From the truth table of @ in
Figure 5, it follows that either I(A) = t or I(B) = t. As a consequence,
we have either I(SU{A}) =t or I(SU{B}) =t.

Next assume that S U {A ¢ B} is strongly unsatisfiable. For every in-
terpretation I, we have I(S U {A @ B}) = f. We show that I(S U {4})
is strongly unsatisfiable. Strong unsatisfiability of I(S U {B}) follows by
symmetry. Let I be an arbitrary interpretation. If I(S) = f, then we are
done. Otherwise, it must be the case that I(A @& B) = f, which implies
that I(A) = £, so that the proof is complete.

®: Assume that S U {A ® B} is satisfiable. There is an interpretation I,

st. I(S) = I(A® B) = t. It follows from the truth table of @ that
I(A) = I(B) = t, which implies that S U {A, B} is satisfiable.
Next assume that SU{A ® B} is strongly unsatisfiable. We have to show
that S U {A, B} is strongly unsatisfiable as well. Let I be an arbitrary
interpretation. If I(S) = f, then we are done at this point. Otherwise, it
must be the case that I(A ® B) = f, which implies that either I(A4) = f
or I(B) = f. In both cases, we have I(SU{A, B}) = f, so that the proof
is complete.

Y¥:  Assume that SU {3z P[z]} is satisfiable. Then there is an interpretation
I, st. I(S) = I( 3z Plz] ) = t. Since y is not free in P[x], we also have
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I( Xy Ply] ) =t. Write I = (D, f,e,t,[]). Using the semantics of X, there
must be a d € D, s.t. I¥( Ply] ) = t. Since y is not free in S, we have
IY(S) = I(S) = t, so that IJ(SU{P[y]}) =t.

Next we assume that S U {Zx.P[x]} is strongly unsatisfiable and prove
that S U {P[y]} is strongly unsatisfiable as well. Let I be an arbitrary
interpretation of S U {Py]}. If I(S) = f, then we are done. Otherwise, it
must be the case that I( Xz P[z] ) = f. We also have I( Xy P[y] ) = f,
because y is not free in P[z]. Write I = (D, f,e,t,[]). By the semantics
of ¥ it follows that for every d € D, we have IJ( P[y] ) = f. Since we pick
d = I(y), which results in I} = I, we obtain that I( Ply] ) = f.

Assume that S U {Ilz P[z]} is satisfiable. This means that there is an
interpretation I, s.t. I(S) = I( lz P[z] ) = t. Writing I = (D, f, e, t,[]),
we have If(t)( P[z] ) = t, which implies that I( P[z :=t] ) = t, so that
I(S U{Ilx P[z], Plz:=t]}) =t.

Next assume that S U { Iz P[z] } is strongly unsatisfiable. Since S U
{ Nz Plz] } € SU{ Iz Plz], Plx := t] }, it must be the case that
SU{ Iz Plz], P[z:=t] } is strongly unsatisfiable as well.

Equality: Assume that SU{ t; & ta, Alt1] } is satisfiable. Since I(t; & t3) =t

Cut:

Theorem 2.20. Let

implies that I(A[t1]) = I(A[tz]), it follows that I(A[tz]) = t, so that
SU{ t; = ta, Alta] } is satisfiable as well.

Now assume that S U { t1 =~ to, A[t1] } is strongly unsatisfiable. We
must show that S U { t1 = ta, A[ta] } is also strongly unsatisfiable. Let
I be an arbitrary interpretation. We have either I(S U {t; = t2}) = f or
I(A[t1]) = f. In the first case, we are done. In the second case, we may
assume that I(SU{t; = t2}) # £, which implies that I(¢; & t2) # f, which
in turn implies that I(¢; =~ t3) = t. But then we have I(A[t;]) = I(A[t2]),
so that I(Aftz]) = f.

Assume that S is satisfiable. This means that there exists an interpre-
tation I with I(S) = t. Since I(A) € {f,e,t}, it must be the case that
I(B) =t for one of {—A, =(#A), A}. This implies that I(S U {B}) = t,
so that S U {B} is satisfiable.
If I(S) = £, then I(SU{—-A}) = I(SU{~(#A4)}) = I(SU{4}) =T,
because each of them contains S as a subset.

O

SURyHL, ..., SUR L

be one of the deduction rules of Fig-

SURFL
ure 7. Assume that { SURF L, X1 F 1, ..., X, b L } is a set of sequents
that strongly represents some property P. Then

{SURFL, ..., SUR,F L, XyFL1, ..., X,-1}

strongly represents P as well.
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Proof. First assume that P is true. By Definition 2.13, SUR and X1, ..., X, are

strongly unsatisfiable. It follows from Theorem 2.19 that all SU Ry, ..., SU
R, are strongly unsatisfiable. Hence SUR; - L, ..., SUR, - 1, Xj I
1, ..., X, F L strongly represents P.

Now assume that P is false. By Definition 2.13, one of SUR or X;,..., X,
is satisfiable. If it is one of the Xi,...,X,, then we are done. Otherwise, by

Theorem 2.19, one of SU Ry, ..., SU R, is satisfiable, so that in both cases,
theset SUR -1, ..., SUR,F L, X; 1, ..., X, F L strongly represents
P. O

At this point we have completed the treatment of Sequc .- We included it
in this paper, because of its close relation to the theorem proving techniques
that we introduce in the next section. In fact, the observation that a sequent
calculus can be based on strong representation is a direct consequence of the
development of theorem proving techniques for PC'L.

Example 2.21. We want to prove that the context of Example 2.9 is strongly
valid. First define:

Ay = Va #H(x) By = —# Vx #H(x)

Ay = Va H(z) > # ( ) By, = —~#Vx H(z)— #G(z

Ay = Va H(zx) = #M(x) By = —#Vz H(x) = #M(x)

A; = < (s)) G(s) By = ~# (H(s)) G(s)

Ay = Vax [H(z)] G(x) = M(z) By = -t Vo [H(z)] G(z) — M(x)
G = ﬁM( ) Bs = —#M(s)

The sequent expansion consists of the following sequents:

ﬁo ZBLFL Ao, A1, Ap, A3, Ba = L
0, 21
AO,Al,BQ FJ_ A07A1’A2’A37A47B5 FJ_

AO;AlyAQ;BB oL 1407141;A’42;"4371447GF i

The last two sequents in the second column originate from M (s). It created two
sequents because it is a theorem.
All sequents are provable. We give a proof of Ay, A1, A2, A3, B4+ L. We
have By =
~# Vx [H(z)] G(z) — M(x)
—Ilz #( [H(x)] G(x) — M(z) )
Yx =t ( [H(2)] G(x) = M(x) ).

We have to apply ¥-introduction, which introduces an eigenvariable for x. This
results in the sequent

Ao, A1, Ao, As, —~#( [H(y)] G(y) = M(y) ) - L.

We have
~#( [H(y)] Gly) = M(y) )
ﬂ(#H()®ﬂH( V#( Gly) = M(y) )
—~#H(y) & ~(=H(y) V#( G(y) = M(y) ).
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We apply @-introduction. The left sequent Ao, A1, Aa, As,~#H(y) F L has an
easy proof, which uses only Ay and —#H (y). The right sequent equals

Ao, A1, A, Az, ~(—H (z) V#( G(y) — M(y) ) = L.

We have
~(=H(y) vV #( G(y) = M(y) ))
H(y) A ~#( G(y) — M(y) )
H(y) ® ~#( G(y) = M(y) ).

We apply ®@-introduction, which results in
AOu Al7 A27 A37 H(y)7 ﬁ7%( G(y) - M(y) ) FL.
The last formula < —#G(y) ® ~#M (y), so that we end up with the sequents

Ao, A1, Az, A3, H(y), ~#G(y) F L
Ao, Ay, Az, A3, H(y), ~#M(y) F L

A

Both sequents are easily provable. The first proof uses Ay, and the second uses
As.

3 Kleening

In the previous section, we introduced the sequent calculus Sequc ;- If one wants
to establish validity of a context |T'||, one first has to construct its sequent
expansion Seq(]|T']|). After that, the resulting sequents can be proven by the
rules in Figure 7. Because the deduction rules can be applied only on Kleene
operators, the PCL operators have to be replaced by Kleene operators during
proof search, which has to be done by the replacement rules in Figure 6. We
have shown that these replacements can be applied on the top level of formulas
because they preserve strong representation of strong validity of the original
context ||T].

In the current section, we will show that there is no need to restrict applica-
tion of the rules of Figure 6 to the top level of formulas. This makes it possible
to remove all PCL operators from a formula before reasoning starts. We call
this process Kleening. After that, we show that < can be further used to tran-
form Kleene formulas into a form that is almost classical logic. We call this
transformation radicalization. This transformation is not only an essential part
of theorem proving procedures for PCL, it also clarifies the relation between
PCL, Kleene logic and classical logic. In particular, radicalization shows that
Kleene logic is almost the same as classical logic, which can be interpreted as:
Although Kleene logic has more truth values than classical logic, its operators
are not changed. As a consequence, one can express definedness/undefinedness
in Kleene logic, but there is no mechanism that checks that only defined values
are used. If one assumes an ill-typed axiom in Kleene logic, it will be possible
to derive consequences from it, which is impossible in PCL.

We turn our attention to Kleening. Kleening is possible, because nearly all
operators are <-monotone.
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Theorem 3.1. All of the logical operators of PCL and the Kleene operators,
with the exception of #, are monotone relative to < . More precisely:

o I[f A=< B, then -A < -B.
o [f Ay X By and As =X Bs, then

Al/\Angl/\BQ, Al\/AQjBl\/BQ, Al—)Angl—)BQ,
Ay < Ay X By & By, [A1]A2 X [By]By, (A1)Az = (B1)Bs.

o If Plzx] <X Ql[z], then

Vo Plz] < Vz Q[z], 3Tz Plx] = Iz Qlz],
Iz Plz] = Iz Qz], Xz Plz] X Xz Q[x].

Proof. The propositional operators can be checked by truth tables. We give
proofs for the two quantifiers V and II. The other two quantifiers can be checked
by using the fact that 3z P[z] = —Va —P[z] and Xz P[z] = -z —P[z].

Assume that Plz] < Q[z]. Let I = (D, f,e,t,[]) be an interpretation.

First assume that I( Vo P[z] ) = t. This means that for every d € D, we
have I7(P[z]) = t. Since Plz] < Q[z], we also have I7(Q[z]) = t for every
d € D. This implies that I( Vo Q[z] ) = t.

Now assume that I( Vz P[z] ) = f. This means that there is a d € D, s.t.
IZ(Plz]) =1, and for every d € D, I%(P[z]) € {f,t}.

Since P[z] = Qlx], the same must hold for Q[z] : There is a d € D, s.t.
I7(Qlz]) = f, and for every d € D, I7(Q[z]) € {f,t}. This in turn implies that
I(Vz Q[z] ) =1.

Next assume that I( Iz P[z] ) = t. This means that for every d € D, I (P[z]) =
t. Since Plx] < Qlz], it follows that for every d € D, I%(Q[z]) = t, which in
turn implies that I( Iz Q[z] ) = t.

Finally, assume that I( Iz Plz] ) = f. This means that there is a d € D, s.t.
I(P[z]) = £. Since P[z] < Q[z], we also have I(Q[z]) = f. This in turn implies
that I( Iz Q[z] ) = f, so that the proof is complete. O

It can be easily seen that # is not monotone: For example, one has £ < T, but
not #E =< #7T. Since we have now established that the rules in Figure 6 are
not restricted to the top level of a formula, we can use them to fully rewrite a
formula into its normal form. This leads to the following definition:

Definition 3.2. For a formula A in PCL (possibly mixzed with Kleene opera-
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tors), we define the Kleening, KI(A), as follows:

KI( A) A, if A is a non-equality atom
KI( #A) = KI*(4)
KI( L) = 1
KI(E) = E
KI(T) =T
Ki(—A) = ﬁKl(A)
KI(AvB) = Kl(4)&KI(B)
KI(AAB) = Kl(4)®KI(B)
KI(A—B) = -KI(A) ®KI(B)
KI(A<B) = (-KI(4)@®KI(B) ) (KI(A)®-KI(B))
KI((A)B) = KI(A) ®@KI(B)
KI( [A]B) = —KI(A) @ KI(B)
Kl(Vz Plz] ) = Iz KI(P[z])
Kl( 3z Plz] ) = Xz KI(P[x])
Kl( tlf-lv’tg) = tl’rtﬁtg
Kl#( A) #A, if Ais a non-equality atom
KI*(#A) =T
KI*( 1) =T
KI*( E) = 1
KI*(T) =T
KI*(-A) = KI*(4)
KI*(AvB) = KI*(4)®KI*(B)
KI*(AAB) = KI*(4)@KI#(B)
KI*(A—B) = KI*(4)®KI*(B)
KI*( A+ B) = KI*(A) @ KI#(B)
KI*((A)B) = KI*(4)® (-KI(4) @ KI*(B))
KI#( [A]B) = KI*(A)® ( -KI(4) ® KI*(B) )
KI#*( Ve Plz] ) = Iz KI*(P[z])
KI#( 3z Plz]) = Mz KI¥(Pz])
Kl#( tl ~ tg ) = T

The additional function K1# is used on formulas that are inside the scope of #.
Using Theorem 2.18 and Theorem 3.1, the following is easy to prove:

Theorem 3.3. For every formula A, A <KI(A) and #A < KI#(A).

Definition 3.4. We say that a formula A is in Kleene logic if it contains only
logical operators from L, T,E, = #,®,®,11,Y (and =), and the operator # is
applied only on non-equality atoms.

It is easily checked that the results of KI(A) and K1#(A) are always in Kleene
logic. The rules for KI( A < B ), KI*( (A)B ), and KI#( [A]B ) may cause
an exponential increase in size of the formula. This problem can be avoided by
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using suitable subformula replacement rules, which are out of the scope of the
current paper.

During the rest of the tranformation, it is convenient to push negation in-
wards as far as possible. This has the advantage that the polarity of non-trivial
subformulas is always positive, which will simplify the remaining transforma-
tions.

Definition 3.5. Let A be a Kleene formula. We say that A is in negation
normal form (NNF) if negation is applied only on atoms and on formulas of

fO'I"m #p(tlu s 7tn)

Definition 3.6. We recursively define a function NNF = NNF1, which trans-
forms a formula into negation normal form:

NNF*(A) = A if A is a non-equality atom
NNFH(#A4) = #A

NNF*(=A4) = NNF™(4)

NNF* (1) = 1

NNF(E) = F

NNF*(T) = T

NNFH(A® B) = NNF'(A)®NNF'(B)
NNF*(A® B) = NNF'(A)®NNF(B)
NNF*(Ilz Plz]) = Mz NNF*(P[z])
NNFH(Sz Plz]) = X NNFY(P[z])
NNF+(t1 ~ tg) = tl ~ tg

NNF™(A) = -Aif Ais a non-equality atom
NNF~ (#A) = —#A

NNF ™ (-A) = NNFT(4)

NNF™ (1) = T

NNF™ (E) = F

NNF™(T) = 1

NNF (A®B) = NNF (A) @ NNF™ (B)
NNF (A®B) = NNF (A) @ NNF™(B)
NNF™ (IIz Plz]) = Xz NNF™(Pz])
NNF™ (Xz Plz]) = Ilz NNF™ (P[z])
NNF~ (tl ~ tg) = ﬁ(tl ~ tg)

Before we continue, we give two examples:

Example 3.7. We Kleene some of the formulas in Example 2.21. We start
with KI(By) = KI(=#Vx #H(x)) = -KI(#Vz #H(z)) = ~KI¥ (Vz #H(z)) =
—Ilz KI# (#H (z)) = =Ilz T. The NNF of this formula equals Sz L.

We have KI(B;) = KI(=#(Vz H(z) — #G(x))) = =KI¥ (Va H(z) = #G(z)) =

—Tz KI#(H(z) — #G(x)) = —Ilz (KI#(H(z)) @ KI* (#G(z)))
-z (#H(x) ® T). The NNF of this formula equals Xz (—#H (z) & L1).
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Kl(43) = KI( (H(s)) G(s) ) = H(s) @ G(s).
Kl(A4) = KI( Vo [H(z)] G(z) = M(x)) =z (—~H(x) ® ~G(x) @ M(z) ).

KI(By) = Kl(—#(Vz [H(2)] G(z) = M(2))) =

-z KI#( [H(z)] G(z) = M(z)) =

Tl (K17 (H(x)) @ (—KI(H (x)) @Kl#( (x) = M(z))) ) =

—|H3: (#H(z)® (—H(z)® (#G(x) @ #M (x))) ). The NNF of this formula equals
z (#H(z) & (H(z) ® (~#G(z) © ﬁ#M(I))))

Example 3.8. We apply Kleening and compute the negation normal form of
each of the formulas in Example 2.21.

A = o (-H (fC) ©#G(zr)) Bi =< Yz (~#H(z)o 1)
Ay 2 Hz (~H(z) ®@#M(z)) By = Xz (-#H(z)& 1)
Az = H(S) G(s) By =X —#H(s ) (H(s) @ ~#G(s))
Ay = Iz (ﬂH(S)EB By = XYz (—#H(z)® (H ( ) ®

G(s) ® M(s)) (—#G(x) & ~#M(2))))
G = ﬁM( ) Bs = j3'%‘£*Z\4( )

As a consequence, a PCL context can be translated into a set of sequents in
Kleene logic, which strongly represents its strong validity. Kleening has a sur-
prising feature, namely that it forgets type information.

Example 3.9. Consider

C1 = Vz [H(z)| G(z) » M(z)
Cy = Vz [H(z)AG(x)] M(z)
Cs = Vz H(z)ANG(x) = M(x)
Cy = Vz H(z) = [G(x)] M(z)
Cs = Vz [H(z)] [G(z)] M(z).

We have Kl(Cl) = KI(CQ) = K1(03) = K1(04) = KI(C5) =
Iz —H(z) ® ~G(x) & M(z).

The formulas were different in PCL, but Kleening has widened them into
the same formula. The formulas still have different meanings in PCL, because
the Kleenings of the —#C; differ. The formula —#C; occurs in the sequent that
represents the type correctness of C;.

The observation that Kleening removes type information can be reformulated
as: Once a formula has been type checked, its type information can be forgotten.
Alternatively, one can say: A typechecked formula can be considered equivalent
to its Kleening. We will see later in this section, that Kleene logic is very close
to classical logic, and that in most cases, the Kleene translation can be assumed
to be in classical logic. In that case, one obtains: Once a PCL formula has been
type checked, it can be replaced by its relativization in classical logic. This
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applies to all of the examples in Section 1. Note that this does not mean that
type checking can be avoided in general, because there also exist formulas that
will fail type checking.

Kleene logic is still three-valued. We will now show that widening can be
further continued up to a point where one almost obtains classical logic. The
following definition prepares for this procedure, in which every atom in a Kleene
formula will be replaced by a modified atom that always has a definite truth
value (a truth value in {f,t}). This can be done without loosing strong repre-
sentation, because it is a widening step.

Definition 3.10. For each predicate symbol p with arity n, we define the fol-
lowing abbreviations:

po(ts, ... tn) = 1

pe(te, ... tn) = #p(te, .. tn) @ p(t, ... tn)
pe(tla -atn> = _'#p(tlv---ytn)

pe(te, ... tn) = #p(ty,.. . tn) @p(t1, ... ty)
Pre(ti, .. tn) = —H#D(t1, ... tn) Dty ... tn)
Pet(ti, . tn) = —#p(tr,...,tn) S pts,... tn)
pea(t, .- tn) = Fp(tr, ... tn)

pfﬁeﬁt(tl, ceey n) = T

The following can be easily proven:

Theorem 3.11. For every atom p(t1,...,tn), for every A C {f, e, t}, for ev-
ery interpretation I, we have I(px(t1,...,tn)) =t iff I(p(t1,...,tn)) € A, and
I(pa(t1,...,tn)) = £ otherwise.

It follows from Theorem 3.11 that one always has I(px(t1,...,t,)) € {f,t}.

Definition 3.12. Let A be a Kleene formula in NNF. We recursively define
the radicalization Rad(A) of A as follows:

Rad( p(tl,. ,tn) ) = pt(th---,tn)
Rad(=p(t1,...,tn) ) = pe(t1,...,tn)
Rad(#p(t1,...,tn) ) = peelt,... tn)
Rad(#p(t1,...tn) ) = Delti,...,tn)
Rad( t1 =t ) = t; =iy

Rad(T) = T

Rad(E) _—

Rad(L) = 1

Rad(A ® B) — Rad(4) @ Rad(B)
Rad(A @ B) = Rad(A) ® Rad(B)
Rad(Tlz P[x]) = Iz Rad(P[z])
Rad(Zx P[z)) = Xz Rad(P]x])
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Radicalization is called ‘radicalization’ because in the resulting formula, every
non-atomic subformula always has a definite truth value. This has a surprising
consequence, namely there is no need to use Kleene operators anymore. In the
resulting formula, each Kleene operator can be replaced by its corresponding
classical (or PCL) operator without changing the truth value of the formula.
This implies that in the last four rules of the definition of Rad, one could have
used A, V,V, J instead of ®, ®,II, X.

Theorem 3.13. For every Kleene formula A in NNF, we have A < Rad(A).

Proof. First check (by case analysis) that

p(t, .- tn) = pelte, . ta),
Pty stn) 2 pe(ts, . ta),
#p(tlaatn) j pf,t(tlu'-'u n)u
"#p(tla"'utn) j pe(t17"'7tn 9
E =< 1.
After that, apply Theorem 3.1. O

We give an example of radicalization:

Example 3.14. Radicalizing the formulas in Example 3.8 gives:

By = Yx L
Ao = Tz Hei(x) =
A = Uz (He(x) ® Gra(a)) P R
Ay = Nz (He(x) ® Meg(z)) B; = He(s)e Hg(s) ® Ge(s))
As - Hi(s) ® Gy(s) By = Yz (He(z)® (He(z) ®
Ay = Tz (He(s) ® Ge(s) @ Mi(s)) (Geo() ® Mo(x))))
¢ = M By = M)

The resulting sequents still strongly represent strong validity of the context in
FEzxample 2.9.

At this point, we are close enough to classical logic, so that it is possible to
define a resolution procedure in the standard way. One can Skolemize the
radicalized sequents, factor them into clausal normal form, and apply resolution
between atoms py(t1,...,t,) and py(u1, ..., u,), when ANy = @, and the ¢; are
unifiable with u;. Since we are interested in geometric logic, for reasons that were
explained in [9], we will develope a theorem proving procedure for geometric
logic in the remaining section of this paper. In Section 6 we will describe the
remaining transformation from radicalized sequents into geometric logic.

In the remainder of the current section, we will discuss the relation between
radicalized formulas and classical logic. We start by observing the following
fact:

Theorem 3.15. For every Kleene formula A that is in NNF, for every inter-
pretation I, we have I(Rad(A)) =t implies I1(A) = t.
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Proof. The theorem can be easily proven by induction. For the base cases, we
have the following implications, which can be proven using Theorem 3.11:

I(pe(ty, . tn)) =t = I(p(ts,...,tn)) =t,
I(pf(tla 9 n)):t = I( ﬁp(tla"'atn)):ta
I(pf, (tlu 7tn)):t = I( #p(t17 7tn)):t7
I(pe(tla'- s ln ):t = I( ﬁ:/%'ép(ﬁlu ,tn)):t,
(1) = = I(E)=
The induction steps for the remaining operators are trivial. O

It follows from Theorem 3.15 and Theorem 3.13 that I(Rad(A)) =t < I(A4) =
t, so that, if one uses Kleene logic in the traditional way for satisfiability testing,
then it is hardly more expressive than classical logic. The only difference is that
Kleene logic has more interpretations, so that it is easier to make formula true.
This can only happen if the formula contains occurrences of —#p(t1,...,tn).

Lemma 3.16. Let A be a Kleene formula in NNF. If A does not contain a
subformula of form —#p(t1,...,t,), then Rad(A) is satisfiable in a two-valued
interpretation iff Rad(A) is satisfiable in a three-valued interpretation.

An example of a set of formulas that is satisfiable in a three-valued inter-
pretation, but not in a two-valued interpretation is the set {A¢¢, Ae @ Be}.
This set originates from radicalizing the sequent {#A, ~#(A A B)} b L, which
results from the incorrect assumption that type correctness of A implies type
correctness of #(A A B).

Atoms of form —#p(t1,...,t,) rarely occur in formulas that were introduced
by an Ey(||T]|,¢) of Definition 2.12. These are the sequents that correspond to
the correctness of a theorem. Atoms of this mostly occur in sequents that
originate from type checking assumptions and theorems. It follows that most
theorems, once they have been type checked, become equivalent to their rela-
tivizations into classical logic.

In Example 3.8, the last sequent Ag, A1, Ao, A3, A4,G + L, which corre-
sponds to correctness of the theorem MY (s), does not contain a subformula of
form —#p(t1,...,t,), while all of the other sequents do, with the exception of
By L. The reason that By does not contain a formula of this form is the fact
that Kl replaced ~##H (z) by L.

In our view, the examples and Lemma 3.16 show that Kleene logic does
not have much advantage over classical logic, when the application is based on
satisfiability checking only. In [4], Kleene logic is used in a more sophisticated
way that is related to PCL, and with a similar philosophy: Formulas in which
preconditions are violated should never be allowed to denote. This is obtained
by introducing two levels: The first level contains only total predicates, and is
used to define the preconditions of functions and predicates on the second level.
The second level, which contains the theory of interest, is allowed to contain
partial functions and predicates, but the preconditions must be expressible by
formulas of the first level. Before the second level is considered, all preconditions
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must be proven in the theory of the first level. After the preconditions have been
checked, by monotonicity of Kleene logic, the second level theory can be treated
as a standard, two-valued theory. PCL is more expressive than the approach
in [4] in two ways: First, in [4], preconditions in the second level must always
have definitions in the first level, which makes that preconditions are always
eliminable from the theory. In PCL, it is possible to reason about preconditions
involving assumed predicates that have no definitions, like e.g. in the theory
#A — #(AV B), which is false in the interpretation I(4) =t, I(B) =e.In [4],
#A and #B would have to be concrete predicates, which have to be provable.
It is not possible to assume that a type condition is true. The second difference
is that PCL has an unlimited number of levels of type dependencies, as can be
seen from Figure 2, where( (—) depends on <, which in turn depends on N. In
[4], at most two levels are possible.

4 Three-Valued Geometric Logic

Geometric logic for theorem proving was introduced in [5]. The proof search
algorithm for geometric logic is closely related to model generation (see [15])
or to proof search based on hyper tableaux (see [3]). In [9], we introduced a
variant of geometric logic, in which function symbols are replaced by predicates,
which is able to deal directly with equality, and which uses learning. The search
algorithm is similar to the algorithm in [6]. Whenever the algorithm encounters
an existential quantifier, it first tries all existing domain elements as possible
witness. If this does not succeed, it extends the model with a new domain ele-
ment. The difference is that our method replaces function symbols by predicate
symbols, and that it relies on lemma learning during search.

We will adapt the strategy of [9] to Kleene logic. As a starting point, consider
propositional 2-valued geometric logic. Formulas have form A;A---AA, = BV
-V By, where A1,..., Ay, Bq,..., B,y are atoms. An interpretation is a finite
set of atoms. The search algorithm starts with the empty interpretation I = {}.
During search, it checks for geometric formulas A; A--- A A, = B1 V-V By,
s.t. all A; € I, but no B; € I. If no such formula exists, then a model is
found. Otherwise, it backtracks through all of the interpretations I U {B,}. If
backtracking exhausts all possibilities, then the algorithm reports that the set
of geometric formulas is unsatisfiable.

The search algorithm treats f and t differently. Atoms that do not occur
in the interpretation, are false by default. In a formula, the atoms on the left
hand side are passive, which means that they are waiting until they occur in
the interpretation. The atoms on the right hand side are active, which means
that they are able to extend the interpretation, when this is necessary. This
asymmetry is useful in many practical problems, because problems are often
sparse, which means that only a few atoms are true in them.

In Kleene logic, the distinction between passive and active atoms will be more
complicated, due to the presence of a third truth value. One first has to decide
which truth value will be the default. Both f and e are reasonable candidates.
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We choose f, because type predicates are naturally false, because it is natural to
assume that a given object does not belong to a given type, unless it has to, and
also relational translations of functions are naturally false, because functionality
restricts them from being true too often. As a consequence, interpretations
will list the atoms whose truth assignment is not f. Because there are two
possibilities, truth values have to be stored in the interpretation as well.

Inside the formulas, the distinction between passive and active atoms cannot
be maintained. An atom of form Ae must be able to extend the interpretation,
when it is required, but it must also be able to detect a conflict when Ay is added
to the interpretation by another formula. Consider for example the formulas
Ag V Be and Af V By, and the interpretation I = {A¢}. Looking at the first
formula, the atom Ag is inconsistent with I, so that we add Be to I. Now in the
second formula, both As and By have become inconsistent with I, so that the
interpretation is closed, and we have to backtrack. If we would have considered
the second formula first, then By would have extended the interpretation, and
Be would have been in conflict with it. It follows that atoms of form Be or
By can play either a passive or an active role. Atoms of form By, Bt e, Be ¢ are
always passive, because they are true when no atom of Be or By is present in
the interpretation.

Definition 4.1. A geometric atom is an atom of one of the following three
forms:

1. An atom px(z1,...,2n), where x1,...,2, are variables, not necessarily
distinct, and X\ = {f},{e}, {t},{f, e} or {f,t}.

2. An equality atom x1 = T2, with x1,xe distinct variables.

3. An existentially quantified atom Sy px(z1,...,%,), where T1,...,x, are
variables, not necessarily distinct, and A = {e} or {t}. There must be at
least one occurrence of y among the x;.

We will usually write Sy pa(x1,...,2n,y), even when y does not have to
be at the last position, and there can be more than one occurrence of y.

A geometric formula is a formula of form 1Iz Ay & --- @ A,, where each A; is
a geometric atom with all its free variables among T. It is not required that A;
contains all variables of .

The term ‘geometric atom’ is slightly misleading because an object of form
Jy pa(x1,...,2Zn,y) is not an atom. We think that it is sufficiently close to an
atom, so that it can still be called ‘atom’.

The search procedure is an adaptation of the procedure of [9] for classical
logic. It is defined in two stages: The first stage is a simple backtracking
procedure, that backtracks through all possible interpretations. The second
stage is obtained by adding lemma learning to the procedure of the first stage.
The addition of lemma learning is essential for obtaining an efficient strategy.
In order to define the first stage, we need to define interpretations. We first
define the domain elements of the interpretations.
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Definition 4.2. We assume a countably infinite set of domain elements .

Definition 4.3. A ground substitution © is a partial function from variables
to £. If A is a geometric atom, all whose free variables are defined in ©, then
AO is the result of replacing each free variable x by its corresponding r©.

We call the atoms that can be obtained in this way ground atoms.

As with ‘geometric atom’, the term ‘ground atom’ is not completely correct,
because ‘ground atoms’ are not always ground, and also not always atoms, but
we think they are close enough.

Definition 4.4. An interpretation is a pair (E, M) in which E C £ is a set of
elements, and M is a set of ground atoms of form px(e1,...,e,), s.t. A=e or
A =1t, and all e; € E. It is not allowed that M contains a conflicting pair of

fO’l"m pe(elu .. '7671)7 pt(elu .. 7en)'

An interpretation stores the ground atoms that have truth assignments different
from the default value f. Using this semantics, one can define when a ground
atom is true in an interpretation. An atom of form p¢(e) is true in M if py(e)
occurs in M. An atom of form pe(e) is true in M, if both of pe(e) and pi(e) do
not occur in M. An atom of form pr (e) is true in M if pe(e) does not occur in
M.

When an atom is not true in an interpretation, there are two possibilities:
Either it can be made true by extending M, or it can be made true only by
making M smaller. In the second case, we call the atom in conflict with M.

Definition 4.5. Let (E, M) be an interpretation. Let A be a ground atom with
all its elements in E. We say that A is false in (E, M) if one of the following
holds:

1. A has form ey = ea and e1 # es.
2. A has formppyy(er,...,en), A#T£, and M does not contain py(e1,. .., en).

3. A has form px(ei,...,e,), £ € X and M contains an atom of form
puler, ..., en) with p & A

4. A has form Ty pa(e1, ..., en,y) with A = {e}, {t}, and there is no e € E,
s.t. paler, ..., en,€) occurs in M.

We say that A is true in (E, M) if A is not false in (E,M). We say that A is
in conflict with (E, M) if one of the following holds:

1. A has form e; =~ ea and e1 # es.

2. A has form px(e1,...,ey), and M contains an atom of form py(e1, ..., en)
with 1 & .

It can be seen from Definition 4.5 that an atom of form Xy py(es,...,en,y) is
never in conflict with an interpretation. This is because it is always possible to
add a new element e to E, and to add py(ey,...,en,e) to M. It is easily shown
that a conflict atom is always false:
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Lemma 4.6. Let (E,M) be an interpretation. Let A be a ground atom all
whose elements occur in E. If A is in conflict with (E, M), then A is false in
(E,M).

It is also easy to show that the only way of repairing a conflict is by backtracking;:

Lemma 4.7. Let (E,M) be an interpretation. Let A be a ground atom all
whose elements occur in E. If A is in conflict with (E, M), then A is also in
conflict with every interpretation (E',M'), s.t. E C E' and M C M'.

If an atom is false in an interpretation, but not in conflict, then it can be made
true by extending the interpretation as follows:

Definition 4.8. Let (E, M) be an interpretation. Let A be a ground atom with
all its elements in E. Assume that A is false in (E, M), but not in conflict with
(E,M). We say that A extends (E, M) into (E', M') if either

1. A has form px(e1,...,en) with A\ = {e},{t}, and (E',M') = (E,M U
{p)\(elv"'ven) })

2. A has form Xy pa(er,...,en,y) with X € {e},{t}, and there exists an
e€cE,st. (E',M)=(E, MU{pr(e1,...,en,€) }).

3. A has form Xy pa(e1, ..., en,y), and there exists an é ¢ E, s.t. (E',M') =
( EU{é}7 MU{p)\(elv"'ven;é) })

We write (E,M) =4 (E',M'), if A extends (E, M) into (E', M),

In case A is existential, the relation =>4 is non-deterministic, because one
can choose either to use an existing e € E as witness, or to create a new é € F.
In the latter case, the actual é chosen does not matter. We will always assume
that there is a fixed way of obtaining a new é ¢ E, and that only one é will be
considered.

The following lemmas states that it is always possible to extend, that atoms
made true by extension will remain true, and that extension is the smallest
modification that makes an atom true.

Lemma 4.9. Let (E,M) be an interpretation. Let A be a ground atom all
whose elements are in E. Assume that A is false in (E, M), but not in conflict
with (E, M). Then the following hold:

1. There exists an interpretation (E',M’), s.t. (E,M) =4 (E',M").

2. A is true in every interpretation (E', M') for which (E, M) =4 (E', M'),
and in every interpretation (E",M"), s.t. E' C E" and M' C M".

3. For every interpretation (E", M") with E C E"” and M C M" in which A
is true, there exists an interpretation (E',M"), s.t. (E,M) =4 (E',M’)
and E' CE", M' C M".
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Note that part 3 implies that false atoms that are not in conflict, cannot be
made true by backtracking.

Definition 4.10. Let FF = 1IT A1 & --- ® A, be a geometric formula. Let ©
be a ground substitution that is defined for all variables in T. We say that F is
false in (E, M) with ©, if all instantiated atoms A;© are false in (E, M).

We say that F conflicts (E, M) with © if each of its instantiated atoms A;©
is in conflict with (E,M). In that case, we call F a conflict formula of (E, M).

Using extension, we define the first search algorithm. It tries to extend an
interpretation (E, M) into an interpretation (E’, M’) that makes all formulas
true with every ground substitution.

At each stage, the algorithm looks for a formula F' and a substitution O, s.t.
FO is false in the current interpretation. If no F' and © are found, then (E, M)
is a satisfying interpretation. If F' is a conflict formula, then the algorithm fails,
and it backtracks. If F' is not a conflict formula, then the algorithm backtracks
through all possible extensions (E’, M’), based on an atom A of F' that is false,
but not in conflict with (E, M).

Definition 4.11. Algorithm S;(G, E, M) is called with a set of geometric for-
mulas G and an interpretation (E, M). It tries to extend the interpretation into
an interpretation (E', M'), that makes all geometric formulas in G true. If no
such interpretation exists, it returns L.

If such an extension exists, it either returns an interpretation (E', M') with
ECFE', M C M, in which all G are true, or it does not terminate. Si(G, E, M)
is defined by case analysis:

MODEL: If for all formulas F € G all ground instances FO that use only
elements in E, are true in (E, M), then Si(G, E, M) returns (E, M).

SELECT: Otherwise, G contains at least one formula F, for which there exists
a substitution ©, s.t. FO is false in (E,M). Let Ay,..., Ay, be the atoms
in F'O that are not in conflict with (E, M). Select an F and a O, for which
m is minimal.

FAIL: If m =0, then F is a conflict formula, and S¢(G, E, M) returns L.

EXTEND: If m > 0, then for every A;, for every (E', M') with (E, M) = 4,
(E',M"), do the following:

o Assignr = S¢(G,E',M'"). If r is an interpretation, then return r.

If we reached the end, we know that all recursive calls returned L. In that
case, S¢(G,E, M) also returns L.

Theorem 4.12. Let G be a set of geometric formulas. Let (E, M) be an inter-
pretation, s.t. for every formula F € G, every instance FO is true in (E, M).
Let Egy C E, My C M. Then S¢(G, Eo, My) does not return L.
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Proof. Algorithm S; is non-deterministic. It is possible that it runs in accor-
dance with (E, M), but it doesn’t have to, because it may enter another, possibly
infinite branch. We show that it is impossible that it returns L.

Suppose that S¢(G, Fo, M) returns L. We will derive a contradiction. Let
(E;, M;) be the biggest interpretation with E; C E, M; C M that occurred in
the run of S¢(G, Fo, My).

Consider S(G, E;, M;). Certainly MODEL did not apply, because in that
case, S¢(G, Eo, Mo) would have returned (E;, M;). This means that SELECT was
entered. Let F, O be the formula and the substitution that were selected. Since
FO is true in (E, M), there must be a literal A in F'O, that is true in (E, M).
It follows from Lemmas 4.6 and 4.7 that A is not in conflict with (E;, M;). As a
consequence, S¢(G, E;, M;) will not enter FAIL, and A will be among the A;. Tt
follows from Lemma 4.9, part 3, that there exists an interpretation (F;q1, M;y1),
s.t. Ez g EfL'Jrl g E, and Mz g Mi+1 g M. This implies that St(g, Ei+1,Mi+1)
was called. Since A is true in (E;+1, Mi+1), it follows that M; # M;11, which
contradicts the original assumption that (E;, M;) is maximal. O

Next we prove completeness. In order to do this, we show that when
S:(G, E, M) does not return L, it either constructs or approximates a model.
In the proof, we need the assumption that SELECT selects in a fair fashion.

Theorem 4.13. Let G be a set of geometric formulas. Let (E, M) be an in-
terpretation. Assume that Si(G, E, M) does not return L. Then there exists an
interpretation (E',M') with E C E' and M C M’, s.t. for all formulas F in
G, for all ground substitutions © with range in E’, the instance FO is true in
(E', M").

Proof. It S¢(G, E, M) returns through MODEL with interpretation (E’, M),
then the theorem is trivially true.

Otherwise, the algorithm runs forever. By Konig’s Lemma, it must pass through
an infinite sequence of interpretations (Eo, My), (E1, M1),...,(E;, M;), ..., s.t.
for each i, the next interpretation (F;t+1,M;4+1) is obtained from (E;, M;) by
EXTENSION, and (FEy, Mp) is the initial interpretation (E, M). Define E,, =
J E; and M, = |J M;. We show that for every formula F in G, for every ground
substitution © with range in E,,, the instance FO is true in (E,, M,,).

Let F,© be a formula and a ground substitution with range in E, s.t. F'O
is false in (E,,, M,). We will derive a contradiction. The atoms in F'© can be
separated into the atoms Aj,..., A, that are not in conflict with (E,,, M,,),
and the atoms By, ..., B, that are in conflict with (E,,, M,,).

For every Bj, there must exist an interpretation (Ekj , M;Cj)7 s.t. Bj is in con-
flict with (Ey,, My, ). Let k be the maximum of the k;, which must exist because
the number of possible B; is finite. Since A4, ..., A, are false in (E,,, M.,), but
not in conflict with it, it follows from Lemma 4.9, part 3, that A;,..., A,, are
false in every interpretation (E;, M;). By fairness, there must exist a k' > k, s.t.
F and O were selected by S¢(G, Ex, My/).

If m = 0, then S¢(G, Ey/, My+) would have entered FAIL, which contradicts
the assumption that (Ey1, My), ..., (E;, M;),... is an infinite branch.
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Figure 8: Propositional Geometric Formulas

(1) Ay

(2) A¢r® Bry
(3) Ar®Cry
(4) Ae® At
(5) Ae® Be

If m > 0, then (Ej, ;, My 1) must have been obtained from (Ejy/, My ) by
EXTENSION through one of the A;. This implies, using Lemma 4.9, that A;
is true in every extension of (Ej/ 41, My/11), so that it is true in (E,,, M,,). This
contradicts the assumption that F'© is false in (E,,, M,,). O

This ends the description of the first algorithm. In the next section, we will add
learning to S;. We end the current section with an example.

Example 4.14. Assume that we want to refute the sequent #[A|(BAC), —#[A]B
L. Kleening the first formula results in #A® (-A® (#B@#C)). Radicalization
results in Ast ® (Af ® (Bet @ Crt)). This formula can be factored into the first
three geometric formulas in Figure 8. Kleening the second formula results in
—#A P (A®—-#B). Radicalization results in Ae ® (At ® Be). This formula can
be factored into the last two formulas in Figure 8.

We try to refute the set of formulas using algorithm Sy. We start with in-
terpretation (Eo, Mo), defined by Ey = {} and My = {}. Since the example is
propositional, we will ignore the ground substitutions. All formulas are true in
(Eo, My), except for the last two formulas Ae ® At and Ae B Be.

Both formulas are not in conflict with (Eo, My). In the formula Ae ® A,
both atoms Ae and Ay are false in (FEo, My) but not in conflict with (Eo, Mo).
We have (Eo, M()) = Ao (E(), My U {Ae}), and (E(), M()) = A (E(), My U {At})

We continue search with (Ev, My) = ({},{A4e}). Now the first formula As ¢
is false in (E1, M) and it is in conflict with (Ey, My).

We backtrack and enter the other branch, which results in (Eq, M2) = ({}, {A¢}).
All formulas are true in (FEa, Ms), except for the last formula Ae @ Be.

Atom Ae is in conflict with (Fa, Ms). The other atom Be is false in (Ea, Ms),
but not in conflict. We have (Eq, M3) =p_ (E2, My U{Be}).

The resulting interpretation is (Es, M3) = ({},{At, Be}). Now the second
clause Ag @ By is false in (Es, M3), and it is in conflict with (Es3, M3).

Since we have exhausted all possibilities, we have shown that the set of for-
mulas is unsatisfiable.

In the next section we give a non-propositional example, in which existential
quantification will be used.
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5 Lemma Generation

In [9], model search was combined with lemma generation in order to avoid that
similar work will be repeated by the search algorithm. In this section, we will
show that this is also possible with geometric Kleene logic. Lemma generation
for geometric logic works in the same way as for propositional logic. (See [17],
[11], [16]). Whenever the search algorithm closes a branch, it constructs a con-
flict lemma that will prevent that a similar branch will be explored in the future.
In the DPLL algorithm, the lemma is constructed by propositional resolution.
In geometric logic, the lemma is constructed by rules that are related to pred-
icate resolution. We call the improved algorithm S,,, (G, E, M). It is similar to
Si(G, E, M), but it always creates a conflict formula when it backtracks. The
conflict formulas are derived by the following deduction rules:

Definition 5.1. We define disjunction resolution and existential resolution:

Disjunction Resolution: Let F' = IIZ ®(Z) & pA(T) and G = 1y ¥(y) &
Pus (T1) B -+ B pp,. (G,,) be two geometric formulas. Assume that n > 0,
and that for all j with 1 < j < n, we have AN p; = 0.

Further assume that the atoms p(T) and p(y,),...,p(y,) are simultane-
ously unifiable. Let A be a most general unifier. Then the formula

IIzA TIyA ®(Z)A @ U (y)A
is a disjunction resolvent of F' and G.

Existential Resolution: Let F = Tz ®(T) & Xy pA(T,y) with y € T be a
geometric formula. Let G =
Iz v ¥(Z) ® pp, (Z1,71) B -+ B Py, Gy ) P11 R 21 B -+ BUp R 2p
be a geometric formula for which Nz =0, and for all j with 1 < j < m,
we have AN p; = (.

Assume that there exists a unifier that simultaneously unifies p(T,y) with
all p(Z1,71), ..., 0(Zm, Om), which merges y with all variables in T, but
which does not merge y with a variable from T or Z.

Let A be a most general unifier.

Then the formula ITA TIZA ®(ZT)A DV (Z)A®pA(T, 21)A B - - - @ pA(T, 2n)A
is an existential resolvent of F' and G.

Disjunction resolution is closely related to standard resolution. The description
of existential resolution is admittedly awkward, but the rule is complicated and
we are unfortunately not aware of a simpler way of describing it. In combination
with a quantifier, the notation T means the set of variables being quantified over.
The expression ®(Z) denotes a Kleene disjunction with all its variables among 7,
but which does not necessarily contain all variables from Z. The notation px(T;)
denotes a geometric atom, built using variables from T, but not necessarily
containing all variables from Z. The notation x; denotes a single, arbitrary
variable from T. Variables x1, x2, ... may be distinct or the same. We give an
example of disjunction resolution:
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Example 5.2. Geometric formulas Ilxy Ag(z,y)® B (2, y) and xyz By o(z, y)®
Be(x, 2) @ Ci(x, y, 2) resolve into llxy A¢(x,y) & Cy(z,y,y).

Next we give a sequence of examples of existential resolution, with increasing
complexity:

Example 5.3. Let F be the formula Izy As(x,y)®Xz Bi(x,y, z). We will show
how different formulas G1,...,G4 resolve with F' using existential resolution.

In its simplest form, existential resolution is almost the same as disjunction
resolution. The formula G1 = llzyv Be(z,y,v) ® Ce(x,y) can resolve with F,
which results in Tlzy As(z,y) & Ce(z,y).

G1 contains a variable v, that is matched with the existentially quantified
variable z in F. It can occur only on positions that match the occurrence of z
in F. Trying to resolve F with lxy Be(x,y,y) ® Cs(x,y) would be incorrect.
The formula Go = llzyv Be(z,y,v) ® x ~ v @ C¢(x,y) contains one equality
involving v. In case x = v holds, the atom Be(x,y,v) need not be true. Hence,
we cannot completely resolve ¥z By(x,y,z) away. We have to keep the in-
stances of Bi(x,y,v) where x = v. This gives rise to the existential resolvent
Mzy A¢(z,y) ® Ce(x,y) ® Be(zx,y, ).

1t is possible that the second formula contains more than one variable match-
ing into the existential variable. In formula Gs = Txyvive Bg(z,y,v1) B
Be(z,y,v2) ® x = v1 @y =~ v2 & Ce(z,y), both variables v1 and vy match z.
Ezistential resolution results in Mzy Af(x,y)®C(z,y)® Be(x,y, ) DBy (2, v, y).

Finally, there is a special case where no literal matching By (x,y, z) is present
in the second formula. This form of existential resolution is called ‘degener-
ated’ in [9]. An example is the formula G4 = llzyv 2« ~ v & C¢(x,y) which
can resolve with F either into Mxyy' Ag(z,y) ® By(x,y,x) @ Ce(x,y’), or into
Mayy' Ag(z,y) © Be(z,y,vy) © Ce(y,y').

The following theorem states that it is always possible, after all alternatives
have failed, to construct a conflict formula for the interpretation that we tried
to extend.

Theorem 5.4. Let F' be a geometric formula. Let (E, M) be an interpretation,
and let © be a ground substitution, such that FO is false in (E, M).
Write F in the form 1IT ®(T) D A1 & - - - B Ay, where Ay, ..., Ay, are the atoms
whose instances A;0 are not in conflict with (E, M), and all atoms in ®(T)O
are in conflict with (E, M).

Assume that for every A;, for every interpretation (E', M') with (E,M) = 4,6
(E', M), we have a conflict formula. Then it is possible to derive, using dis-
Junction resolution and existential resolution, a conflict formula of (E, M).

Since Theorem 5.4 is important, but rather complicated, we give an example.
The example uses the formulas of Example 5.3.

Example 5.5. Let the interpretation (E, M) be defined by E = {eg,e1}, M =
{A¢(eg,e1), Cileo,e1)}. Let F =Tay As(x,y) ® Xz Be(z,y, 2) be as in Exam-
ple 5.3. Assuming © = {x :=eg, y := e1}, the instance F'O is false in (E, M).
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(
Ey = {ep,e1} My ={
Ey ={ep,e1} M, ={
Ey = {eg,e1,e2} Mo ={

), Ci(eo,e1), Be(eo,e1,eo) }
eo,e1), Ci(eo,e1), Be(eo,er,e1) }
), Cileo,e1), Beleo,e1,e2) }

Using recursive calls, algorithm Sy, (G, E, M) will collect conflict formulas for
the interpretations (Eg, My), (E1, M1), (Eq, Ms).

Construction of the conflict formula for (E, M) starts from the conflict for-
mula for (Eq, Ms). It has a special form, because of the new element es.

Let G be the conflict formula that was found for (E2, Ms). There ezists a
substitution ©', s.t. each atom in GO’ is in conflict with (Es, Ms). If there is
no variable v in G, for which v®' = eq, then each atom in GO’ is also in conflict
with (E, M), so that we have a conflict formula for (E,M). We can therefore
assume that es is used by ©'. For simplicity, we assume that G contains a
single variable v with vO' = ey. If there are more variables, they can be merged.
Since the only occurrence of e is in the atom Bg(eg, e1,€2), variable v can occur
only in atoms of form Bx(z;, xj,v) with t € X, or of form x; = v. If an atom A
containing v would have another form, the instance A®’ would not be in conflict
with (EQ, MQ)

Consider G1 = lzyv Be(x,y,v)®Ce(x,y) and ©' = {x:=eg, y:=e1, v:=
es}. The instance G10' is in conflict with (Ea, Ms). The assignment v := eg can
be changed to v := eg or v := ey, which would make Bg(x,y,v)0" in conflict with
Bt(eg, e1,eg) or Bi(eo, e1,e1). Since Gy does contain any other atoms involving
v, it follows that Gy is also a conflict formula of (Ey, Mo) and (E1, My).

This is reflected by the fact that F' and Gy can resolve into Hay Ag(x,y) &
Ct(z,y), which is a conflict formula of (E,M) under the substitution {x =
€0, Y :i=e1}.

Next consider Go = Hayv Be(x,y,v)®x = v®Ce(x,y). In Ga, the variable v
additionally occurs in the equality x = v. It is still a conflict formula of (Eq, M>)
with substitution ©'. Gy can also be used as conflict formula for (E1, My) by
changing the assignment of v to v := ey. It cannot be used as conflict formula
for (Eo, Myp), because assigning v := eq makes the equality true.

The existential resolvent of F' and Go, Tzy Ag(x,y) P Ce(z,y)® Bi(x,y, x)
reflects this fact. In order to obtain a conflict clause for (E,M), the atom
Bi(z,y,x) needs to be resolved away. This is possible if we have a conflict for-
mula for (Eg, Mp). Assume that H = Tlay x ~ y® Be(x,y,x) is such a conflict
formula with substitution {x := eg, y := e1}. Using disjunction resolution, one
obtains Mxy As(z,y) ® Ce(x,y) ® x =~ y, which is a conflict clause for (E, M).

Example 5.5 shows the general pattern how existential resolution is used. When
Sm(G, E, M) encounters an existential quantifier, it has to find a witness. It first
tries the existing elements eg,...,e,—1. If they all fail to produce a satisfying
interpretation, it tries a new element e,,. If this also fails, it has conflict formu-
las for all eg,...,e,. The conflict formula for e,, is resolved with the formula
that contains the existential quantifier. The form of the resolvent depends on
the inequalities that occur the conflict formula for e,. For every inequality, it
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contains an additional atom that prevents it from being a conflict formula. The
additional atoms are resolved away with disjunction resolution. We now give
the proof:

Proof. Theorem 5.4 is proven by induction. Some care has to be given to finding
a suitable measure. Existential resolution involving an atom of form Xy By (T, y)
may possibly create a new formula containing different atoms of form B (T, ;),
which have to be resolved away by disjunction resolution.

Let CLOS(F,©) abbreviate the property: It is possible to derive from F
and O a formula F' and substitution ©’; s.t. every atom in F'©’ is in conflict
with (E, M). We prove CLOS(F,©) by induction as follows: If F© is not by
itself in conflict with (E, M), we derive a new I’ using disjunction resolution
or existential resolution from F' in combination with a conflict formula for one
of the extensions of (E, M). The new formula F’ either contains strictly less
existential atoms than F, or it contains the same number of existential atoms,
but the number of atoms A for which A® is false in (E, M) but not in conflict,
has decreased. Write F' in the form IIz ® ® A1 @ --- ® A,,, as in the statement
of the theorem. We will resolve A,, away.

o If A,, is an existential atom, then it has form Xy px(Z,y) with X € {e, t}.
Choose an é € E. Define (E, M) = (EU{é}, M U {p\(TO,é)} ).

Since (E, M) =4, 0 (E, M), and we have assumed existence of a conflict
formula for every extension of (E, M), there must exist a formula C' and a
ground substitution ©, s.t. every atom in C®© is in conflict with (¥, M).
We can assume that C' and A,,, have no variables in common.

The variables of C' can be partitioned into T and Z, where v € T iff v0 = é,
and v € Z otherwise. It is clear from the construction that 7 and Z are
disjoint. The atoms in C can be partitioned into those that contain a
variable from v, and those that do not. Using this, C can be written in
the form ITzZ v ¥(Z) @ ¥'(Z,7). For every atom A € ¥(Z), it must be the
case that A© is a conflict atom of (E, M).

If T is empty, then C is already a conflict formula of (E, M), so that we
have established CLOS(F, ©) with (C, 9).

Since every atom A in U’'(Z,7) contains variables from 7, every A6 must
contain é. This implies that there are only two types of atom in ¥/(Z, ),
namely atoms of form v ~ 2z with v € v, z € Z, and atoms of form
P,(Z,7), withz Cz, v C7,and A & p.

This implies that C can be written in the form

Z7 Y(Z) ®pu,(Z1,01) B B Ppp, Em, Tm) B1 21 B -+ B Uy & 2y,

where ZO does not contain é, and 7O = {é}.

Because the substitution ©U{y := ¢} UO merges the p(z;, 7;) with p(z,y),
it is clear that p(Z,y) and the p(Z;,7;) have a simultaneous most general
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unifier A. From the definition of mgu, it follows that there exists a substi-
tution O, s.t. A-Or =0 U{y:=é}U0O.

Since 7O = {¢} and é ¢ ZO, it follows that A does not unify a variable in
T with a variable in Z. Since yA = € as well, it also does not unify y with
a variable in Z. It is also not possible that A unifies y with a variable in
T, because © matches 7O C F.

At this point, we know that it is possible to construct the existential
resolvent R =

ZA TIZA ®(F)AG Ay AD- - -G Ay 1 AGT (Z)ADBPA(T, 21)AG: - - @A (T, 20) A

We will use CLOS(R, ©r) as induction hypothesis. It is clear that R
contains one existential literal less than C, because C' does not contain
existential literals.

We have to show that for every atom A of R, either A®pg is in conflict with
(E, M), or for every interpretation (E', M’), with (E, M) =46, (E',M’)
there exists a conflict formula.

If Aisin ®(Z)A, then there exists a B in ®(T), s.t. A = BA. Since
AORr = BAOg = BO, and BO is in conflict with (E, M), it follows that
AOp is in conflict with (E, M).

If Ais in W(Z)A, then there exists a B in ¥(z), s.t. A = BA. We know
that AOr = BAOg = BO. We know by construction of ¥(z) that BO is
in conflict with (E, M). It follows that AOg is in conflict with (F, M).

If Ais one of the A; A with i < m—1, then A;AQOr = A;0.If (E, M) = 4,005
(E', M'), then clearly (E, M) = 4,0 (E',M’). We assumed in the state-
ment of the theorem that we have conflict formula for every such inter-
pretation (E', M").

Finally, if A is one of the p)(T, z;)A, then ABOg has form p\ (T, z;)AOrg.
Every argument position that contains the variable z; must have contained
y in the original literal p) (T, y) of F. We know by construction of z, that
zAOp = 2,0 € E. Hence, there is an e € FE, for which we can write
AORr = pa(T,2i))AOR as pr(T,y)N{y = e}. If (E,M) =40, (E',M'),
then we have (E,M) =, @yofy=c (£, M'), which in turn implies
(E, M) =y pr@y)e (B, M'), so that it it follows from the assumptions
of the theorem that there exists a conflict formula.

If A,, (%) is a variable atom, then it has form p (%) with A € {{f}, {e}, {t},
{f,e}, {f,t}}.

It can be easily checked that £ € A, implies that p)(TO) is either true
in (E,M), or in conflict with (E,M). This follows from the fact that
(E, M) contains, by Definition 4.4, either exactly one of po(ZO), pt(TO),
or neither of them. This contradicts the assumption that A,, is false in
(E, M) but not in conflict. Hence A = {e} or {t}.
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There is a single interpretation (E’, M’) for which (E, M) = 4,0 (E', M),
namely (E',M') = (E, M U{p»(ZO)} ).

From the assumptions of the theorem, there exists a conflict formula C'
for (E', M"). Let © be the substitution which brings every atom A € C'©
in conflict with (E’, M’). We can assume without loss of generality that
C has no variables in common with F.

If there is no atom A € C, for which A© has form p,(TO) with ANy = 0,
then C is a conflict formula of (E, M), and we have shown CLOS(F,©)
with (C, ©).

Otherwise, C' can be written in the form C' = 17 ¥(7) ® p, (7,) @ --- &
Pun (Yy), where the p, (7;) are the literals for which p(7©) = p(yjé),
u; VA = 0, and the literals in ¥(y) are the remaining literals. It is
clear that p(Z) and p(7,),...,p(7,) can be simultaneously unified, so it is
possible to construct the disjunction resolvent

R=TzZA TIgA P(@T)A G AIA G --- D Ay 1A B U (P)A.
By definition of mgu, there exists a ground substitution Og, s.t. A-Op =
(CAUNCH
We want to use CLOS(R, © ) as induction hypothesis. First observe that
every atom in ®(T)AOr UV (7)AOR = &(T)O U ¥(7)O is in conflict with
(E,M).
Secondly, for every atom A; in Ay,...,A,,—1, we have A;AOr = A;0.

This implies that, using the assumptions of the theorem, we have a conflict
formula for every interpretation (E', M) s.t. (E, M) = a,r0, (E',M').

Finally, observe that AiA,..., A;,,_1A are the atoms A of R, for which
A is false in (E, M) but not in conflict. Since m —1 < m, we can use
CLOS(R, ©F) as induction hypothesis.

O

We end the section with an example of a complete refutation by algorithm S,,.

Example 5.6. Suppose that we want to use geometric Kleene logic to prove
that a = b implies s(a) = s(b). This means that we have to prove the sequent
a=b, s(a) # s(b) b L. Using the transformations in Section 6, we obtain the
following geometric formulas:

(1) Zy Ae(y)

2) Yy B(y)

Iz Xy Si(z,y)

Haﬁ Af,e(a) @ Bf,e(ﬁ) b a~ ﬁ

Hafy Age() @ Bre(B) ® Ste(a,v) ® Ste(8,7)

~— — — —

3
4
5

NN S N

The predicate A(y) can be interpreted as y =~ a, the predicate B(y) can be in-
terpreted as y = b, and S(x,y) can be interpreted as as s(x) =~ y. The general
method of obtaining such translations will be given in Definition 6.2.
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We use algorithm Sy,. It starts with (Ey, M1) = ({},{}). All formulas are
true in (Ey, My) with every substitution, except for (1) and (2) which are false
with the empty substitution. Neither formula is a conflict formula. Assume
that Sy, selects (1). Then it checks the interpretations (Ea, Mz) for which
(B1, My) =5y a,y) (B2, Mz). It is clear that the only candidate is (Ea, Ma) =
({eo}, {A¢(e0)}). Proof search continues with (Es, Ms). Formula (2) is false un-
der the empty substitution. Formula (3) is false with substitution {x := eg}. Nei-
ther formula is a conflict formula of (E1, M1). Assume that Sy, selects (2) and
the empty substitution. Then we have (Ez, M2) =5y p,(y) (E3, Ms), (Ey, My)

with
Es = {eo} M3 = {A¢(eo), Bi(eo)}
Es={eo,e1} My = {A¢(eo), Beler)}

Assume that Sy, explores (Es, M3) first. Formula (3) is false in (Es, M3) with
substitution © = {x := eg}, but not in conflict. All other formulas are true in
(Eg,Mg). We have (Eg,Mg) =3y Se(eo,y) (E4,M4), (E5,M5) with

Ey = {eo} My = {A¢(eo), Be(eo), Si(eo,eo)}
Es = {ep,e1} Ms = {A¢(eo), Beleo), Seleo,er)}

Assume that (Ey, My) is explored first. Formula (5) is a conflict formula with
substitution {« :=eg, f:=eg, 7:=e€o}.

Algorithm Sy, backtracks and explores (Es, Ms). Formula (5) is again a con-
flict formula, but now with substitution {a := ey, §:= ey, v := e1}. It follows
that algorithm Sy, will apply existential resolution between (8) and (5), merging
S(x,y) with S(o,7y) and S(8,7). The result is Iz Af o(x) ® By e(x), which we
call formula (6). It is a conflict formula of (Es, M3), which is consistent with
Theorem 5.4.

Now Sy, has a conflict formula for (Es, Ms), after which it will consider
(Eyq, My). Formula (4) is a conflict formula with substitution {a :=eg, § :=e1}.
Since extensions (FE3, M3) and (Ey, My) were based on formula (2), Algorithm
S will apply disjunction resolution between (2) and (4), matching B(y) with
B(B). The result is Iz Af o(x) ® Bi(z). Since formula (4) contains an equality,
the resolvent is not yet a conflict formula for (Ea, Ms). In order to obtain a
conflict formula, Sy, has to apply further disjunction resolution with formula (6).
The result is Iz Ag o(x), which we will call formula (7). It is a conflict formula
for (B, M) with substitution {x := eg}. One final step of existential resolution
with formula (1) yields L, which is a conflict formula of ({},{}).

6 Transformation to Geometric Logic

In the previous two sections we have developed a sound and complete strategy
for checking satisfiability of sets of geometric Kleene formulas. It remains to
provide a transformation that replaces sequents by sets of geometric formulas.
When applied to a set of sequents, the transformation has to preserve strong rep-
resentation. A large part of the transformation was already given in Section 3.
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Applying the sequence Kl; NNF; Rad removes PCL operators, transforms into
NNF, and radicalizes the atoms in the formulas, after which all logical opera-
tors in the formula can be considered classical. As a consequence, the resulting
formula sets are so close to classical logic that the transformations of [9] can be
used with small adaptations.

If one applies transformation Kl naively, it may cause an exponential in-
crease in formula size. In order to avoid this, it is possible to define subformula
replacement. Subformula replacement is a standard technique used in first-order
logic theorem proving, in which a complex subformula of form A(T) is replaced
by a new name p(T), together with a definition ¥Z p(Z) <> A(Z), in which T are
the free variables of A(Z). For a discussion of subformula replacement techniques
for first-order logic, we refer to [18]. Subformula replacement in PCL is more
complicated than in first-order logic, because it has to take place before radical-
ization, at a point where PCL still significantly differs from classical logic. We
will not discuss this further in the present paper, because of length restrictions.
In the current section, a restricted form of subformula replacement will be used,
which is completely standard, because it takes place after radicalization.

We now describe the rest of the transformation. The main step is the re-
placement of function symbols by relation symbols. The reason for doing this
is that we want a procedure that is able to combine proof search with model
search, which is done more naturally in a function-free setting. In order to elim-
inate a function symbol f with arity n, we introduce a relation symbol P with
arity n 4+ 1. Constants are treated as function symbols with arity 0.

Example 6.1. Consider the sequent

Vo #N(x)

N(0)

Vo N(x) = N(s(z))
~N(s(s(0)))

L

Applying K1; NNF; Rad results in

11z nyt(I)

N¢(0)

Iz Ne(z) & Ni(s(x))
Ne(s(s(0)))

The sequent contains two functions symbols 0 and s. We introduce a predicate
symbol Z with arity 1 and a predicate symbol S with arity 2.

Yy Ze(y)
Iz Xy Si(z,y)

Ll

Iz Nig(x) FL
Iz Zg e(2) ® Ni(2)

Mzz Ste(z,2) ® Ne(z) ® Ni(z)

212023 Zge(21) ® Ste(21, 22) ® St e(22, 23) ® Ne(23)
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The resulting formulas are in geometric form, but this is not always the case.

In the last sequent, the first two formulas ensure that the introduced pred-
icates are total. There is no need to add functionality axioms because the
predicates occur only negatively in the remaining formulas. This implies that
in every interpretation, the predicates can always be made functional without
making any formulas false.

We now introduce the transformation formally, and prove its correctness.
We call it anti-Skolemization, because it does the opposite of Skolemization.
Anti-Skolemization for Kleene logic does not differ from the procedure in [9] or

[2].

Definition 6.2. We assume a mapping that maps every n-arity function symbol
f to a unique (n + 1)-arity predicate symbol F.

Let A be a Kleene formula that is in NNF and radicalized. An anti-Skolemization
of A is a formula that is the result of making the following replacement as long
as A contains functional terms:

Select a functional term f(x1,...,x,) in which all x1,...,x, are variables.
Such a term necessarily exists. It is possible that n = 0.

Write A in the form Al B[ f(z1,...,zn) | |, where B is a subformula
of A that contains at least one of the occurrences of f(x1,...,2,). Replace

A[ B[ f(x1,...,mn) ] by A[ 1z Fee(x1,...,70,2) ® B[2] .

Definition 6.2 leaves some choice for heuristics in the choice of B, as is shown
by the next example:

Example 6.3. Consider the formula A = Tlz P(s(z)) ® Q ® Re¢(s(x)). If one
chooses B = Py(s(x))@Q®R(s(x)), then one immediately obtains Ixz St o(z, 2)®
(Pi(2) @ Q @ Re(2)). If one first chooses B = Py(s(x)), and after that B’ =
Ri(s(x)), one obtains Iz (Ilz Ste(x,2) ® Pe(2)) ® Q@ (12 Ste(z, 2) ® Re(2)).

The first method has the advantage that St e(x, z) is introduced only once. It
has the disadvantage that it causes Q to depend on St e(x,z). The second choice
does not have this problem, but it introduces St e(x, z) twice. In the presence of
big terms, this may lead to long, repeated sequences of atoms.

A compromise could be to take B as the largest purely disjunctive subformula
that contains f(z1,...,2n), or to factor A into clauses first, and to apply anti-
Skolemization on clauses only. It may also be useful to simplify formulas before
anti-Skolemization.

We postpone the correctness proof, because we first want to give the complete
transformation. At this point, the formulas are almost geometric. It remains to
do some factoring, to do some simplifications, to substitute negative equalities
away, and to rename existentially quantified subformulas that are not an atom.
We define the last step of the transformation on sequents, because it can split
a single formula into multiple formulas.

Definition 6.4. Let S+ L be a sequent containing only Kleene formulas that
are in NNF, function free, and radicalized. We define the final transformation
Geo that makes the formulas in S geometric:
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1. Normalize every formula A in S using the rewrite rules in Figure 9.
2. Replace every formula in S of form A® B by A and B separately.

3. Aslong as S contains a formula A that contains an existentially quantified
subformula Xy Ply] for which Ply] is not a geometric atom or does not
contain y, write A in the form A| Ly Plx1,...,xn,y] |, where z1,...,z,
are the other free variables of P. After that, replace A[ 3y Plx1,...,%n,y] ]
by Al Zy pe(z1, ..., Zn,y) | and Iy - -z Ty peo(@1, ..., Tny ) BP[T1, .. ., Tn,y Y,
using a new predicate symbol p.

At this point, every formula in S has form
nz P4,

where T is a set of variables, and each element of A has one of the following
five forms:

1. A geometric atom. (See Definition 4.1.)

NS}

. A negative equality xq1 % xo with x1,x2 € T.

o

. A positive equality of form x =~ x with x € T. (Positive equalities with
distinct variables are geometric atoms.)

4. L.
5 T.

For every formula IT @ A in S, we proceed as follows: If v ~ x or T in A,
the formula is deleted from S. If A contains L or x % x, it can be removed from
A. If A contains a negative equality 1 % xo with x1 # T, it can be substituted
away. The result is

N7\ {25} ( P Alwr == 2] )\ {21 # 22}

The procedure stops when either the formula is deleted, or all elements in A
have form 1. In that case, the formula is geometric.

At this point, we have given the complete transformation from PCL to ge-

ometric formulas, so that we have established a complete theorem proving pro-
cedure.
Transformation Geo is only the simplest possible transformation. It is clear
that the transformation can be improved by trying to simplify the formula, by
trying to apply antiprenexing, and by other transformations. Figure 10 lists
some possible simplifications that can be considered.

Since the factoring rules in Figure 9 may cause existential blow up, one can
also try to replace subformulas. Subformula replacement is also needed for prov-
ing the correctness of anti-Skolemization, since every predicate F(z1,...,Zn,y)
can be viewed as an abbreviation for f(z1,...,z,) = .
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Figure 9: Rewriting into Geometric Formulas

A® (B O) =
(A B)a C =
(Ilz Plz)) @ A =
A@Ilx Plx =
Iz (Plz] @ Q[z]) =

(AeB)® (Aa0)
(AeC)® (BaC)

Iz (Plx] ® A)
Ilz (A& Plz])
(Ilz Plz]) @ (M Q[x])

Figure 10: Possible Simplification Rules

Iz (Plz]®A) =
Iz (A& Plz]) =
Yz (Plz]® A) =
Yz (A® Plx]) =

Yz (Plz]®Qz]) =

TOA = T
AT = T
1A = A
Aol = A
r~r = 1
zér = L

(Ilz Plz])® A
A@ Tz Plx]

(Xz Plz]) @ A
A® (Zz Plzx])

(X Pla]) & (B2 Q[z])

TA = A
ART = A
1A = L
Al = 1
Il T = T
Yl = L
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We will now give the correctness proofs of the transformations, where ‘cor-
rect’ means that the transformation preserves strong representation. Both anti-
Skolemization and transformation Geo extend the signature by introducing new
predicate symbols. Correctness can be proven in two ways: Either one shows
that the predicates have a definition, and uses the fact that definitions are con-
servative, or one uses the fact that there exists a predicate with the desired
property, after which exists-introduction can be applied backwards. Due to the
eigenvariable condition, this will introduce the predicate as a new predicate into
the sequent. We will follow the second approach. Since the new symbol is a
predicate symbol, we need to introduce quantification over predicates, and a
corresponding introduction rule. We also add a ®-elimination rule to the cal-
culus. This has the advantage that multiple formulas can be combined into a
single formula.

Definition 6.5. We extend the set of formulas, that was first defined in Defi-
tion 2.1, and extended in Definitions 2.17 and 3.10 with a second order, exis-
tential, Kleene quantifier:

o If F is a formula and p is a predicate symbol that occurs in F only with a
fized arity n, then Xp F is also a formula.

Formulas of form Yp F are interpreted as follows: First define I' ~, I if for
every symbol s that is not the predicate symbol p, we have I'(s) = I(s). Nexat
define Rp = {I'(P) | I' ~, I}. Finally, define I(Zp F) by selecting from Rp
the most preferred value, using the preference list for ¥ in Figure 5.

We extend the calculus Seqpoy, with the following deduction rules:

S, Plgl+ L S, A® B, SF L
S, Sp Plp|F L S A BFL

In the first rule, predicate ¢ must not occur in S or P[p|, and it must have the
same arity as p.

It easy to prove for both rules that they preserve strong representation. The
first rule is the natural extension of X-introduction to second order. The second
rule tells that there is no need to distinguish between A and B separately, and
A ® B combined in a Kleene conjunction.

We now prove that positive subformula replacement is widening. (See Defi-
nition 2.15) Note that we do not assume that the formula is radicalized.

Theorem 6.6. Let A be a formula that may contain PCL and Kleene operators.
Let B be a subformula of A that is in the scope of I1,X, &, ®, but no other
operators. Assume that x1,...,x, are the free variables of B. Let p be a predicate
symbol of arity n that does not occur in A. Then

K T elL1,...,Tn @ Blx sy Tl @
Al Blas,... w0 | 2 5p { Mo Pl 0) © Blon, o)
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Proof. Throughout the proof, we will abbreviate z1,...,x, as T.

First assume that I(A[B[z]]) = f. Let I’ be an interpretation for which
I' ~, I. (which is equal to I except for the interpretation of predicate p) We
have to show that I'( ( IIT pre(T) ® B[7]) ® Alpt(T)] ) = .

If there exists an interpretation J, with J ~z I, J(B[Z]) = £, and J(pt(T)) #
f, then we have J(ps (%)) = f. This implies that J(pse(T) ® B[T]) = £, which
in turn implies that I’ (IIT p¢ e(T) ® B[Z|) = £, which would complete the proof.

So we can assume that J ~z I’ and J(B[Z]) = f implies J(pt(Z) = f in
the rest of the proof. Once we have established this fact, it is easy to prove by
induction on the number of operators in A’[ |, (which can be only II, ¥, ® or @)
that

for all J ~z I' with J(A'[B[z]]) = £, we have J(A'[ps(T)]) = f.

Since this applies to A’[ ] = A[ ] and J = I’, the proof for f is complete.
Next assume that [(A[B[Z]]) = t. Let F be the function from D™ to {f, e, t},
that is defined by

F(di,... dy) =I5 -4 (Blan, ..., 2,)).

Define I’ = I%. It is clear that I’ ~, I, and in every interpretation J with
J ~z I', we have J(B[z]) = J(p(T)). It follows immediately that I’ ( IIT pf (T)®
B[z] ) = t. It remains to show (using induction on the number of operators in
context A’[ ], which can be only II, ¥, ®, @), that for all interpretations J,

J ~z I' and J(A'[B[z]]) = t implies J(A'[ps(T]]) = t.
This completes the proof. O

After having shown correctness of subformula replacement, which is used as
part of the transformation Geo, but which also can be used separately as opti-
mization, it remains to prove correctness of anti-Skolemization. It is straight-
forward to prove that truth of a formula implies truth of its anti-Skolemization.
The introduced predicates F(T,y) can be viewed as abbreviations for f(Z) ~ y.
In order to show that falsehood is preserved as well, there are three possible
ways to proceed: Firstly, one can apply Skolemization on the seriality axioms
Iz Xy F(T,y), which will reintroduce the function symbols. This method was
used in [9]. Secondly, one can use the fact that algorithm S; only constructs
interpretations (E, M) in which the interpetations of the predicates F are func-
tional. This is because it introduces a witness only when it has to, and the
only position where a predicate I can be false but not in conflict with an in-
terpretation (E, M), is in the seriality axioms. Thirdly, one can give a direct
proof. Because the only positive occurrence of a predicate F is in the seriality
axioms IIZ Xy Fi (T, y), the interpretations of F' can be made functional, without
making any of the other formulas false. We will use the last approach.

Theorem 6.7. Anti-Skolemization is a widening operation: Let A be a Kleene
formula that is in NNF and radicalized. Let fi,..., fi be the function symbols
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that occur in A. Let n; be the arity of f;. Let A’ be be obtained from A by anti-
Skolemization. Let Fy,..., Fy be the predicate symbols that were introduced
during anti-Skolemization. Then

Hxl"'xnl Ey Fl,t(xla"'v'rnlvy)
<YF. ... _
AZDFy - ® My xp, Xy Fre(@i,..., T, Y)
A/

Proof. First observe that, due to the fact that A is radicalized, we have I(A4) €
{f, t}, so that we could have used = instead of <. Assume that I(A4) = t. We
can extend I by setting

t if I(f])(dl,,dnj) =€

I(FJ) (dr, ..., d"ﬂ"e) - { f otherwise

It is clear that I’ ~F,..F, 1. The formula A’ is obtained from A by a sequence
of replacements Ay, As, ..., Ay, with A1 = A, A,, = A, and each replacement
made in accordance to Definition 6.2. It follows from Lemma 6.8 that for each
of the replacements we have I'(A4;11) = I'(4;), so that it follows that I(A’) = t.

Next assume that there exists an interpretation I, s.t the right hand side
of < is true in I. By the semantics of ¥, there exists an interpretation I’, s.t.
r ~%,. T, L I'(A") = t, and for each j,

I'( My C by, Ny ijt(xl,...,xnj,y) ) =t.

Using axiom of choice, it is possible to restrict the relations F in such a way
that the derived relations F'; become functional.

Let I” be an interpretation obtained in this way. We can apply Lemma 6.9,
from which it follows that I”(A’) = t. Since the derived relations F;4 are
functional, it is possible to extend I” into an interpretation I"”’, where

I”I(fj)(dl, ce ,dnj) =eciff I”I(Fj7t)(d1, ce ,dnj,e) =t.

Now the replacements of Definition 6.2 can be made backwards until A is ob-
tained. It follows from Lemma 6.8 that I""(A) = f. O

Lemma 6.8. Let I be an interpretation with domain D. Let f be a function
symbol with arity n. Let F be a predicate symbol with arity n + 1. Assume that
forall dy,...,d,,e € D, we have

I(F)(dl,...,dn,e):{ ; Z}{éfl)ugl;,...,dn):e

Let A[B] be a formula with a subformula B, that occurs only in the scope of
operators II, X2, @, ®. Assume that B contains a term f(t1,...,t,), and that no
variable of f(t1,...,tn) is bound in B. Then

I( A[B[f(t1,..-,tn)]] ) =I( A[ Iz Fre(t1,...,tn,2) ® Blz] ] ).
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Lemma 6.8 tells for example that I( Iz P(x,s(z)) ) = I( llxz Sge(z,2) ®
P(z,z) ) if I interprets S as the relation that represents function s.

Lemma 6.9. Let A be a Kleene formula that is in NNF and radicalized. Assume
that A has form (xy -z, Xy Fe(x1,...,20,y) )QA’, and that all occurrences
of predicate F in A’ are of form Fx(t1,...,tn,u) where X\ does not contain t.
Let I be an arbitrary interpretation with domain D. Let I' be obtained from I
by restricting Fy in such a way that the following conditions are met:

o I/NFI,

e Foralldy,...,dn,e € D, if I(F)(d1,...,dn,e) #t, then I'(F)(dy,...,dn,e) =
I(F)(dy,. .. dy,e).

e Foralldy,...,d, € D there still exists ane € D, s.t. I(F)(dy,...,dn,e) =
t.

Then I(A") =t implies that I(A) = t.

7 Conclusions and Future Work

We have developed a sound and complete theorem proving procedure for Par-
tial Classical Logic (PCL). A context is first decomposed into a set of sequents
that represents the type assumptions and theorems that occur in it. After that,
the resulting sequents are transformed into Kleene logic. Due to redundancy
that is introduced by the decomposition into sequents, it is possible to ignore
the possibility that formulas are ill-typed (are interpreted as e) during further
transformations on the sequents. This redundancy can be used to radicalize the
Kleene formulas into formulas that always have a definite truth value. Once
the formulas have been radicalized, various theorem proving strategies can be
applied on them. In most cases, including all examples in this paper, the radi-
calizations of theorems can be treated as classical. We interpret this as: Once
a theorem has been type checked, it can be treated as if it is classical.

The redundancy, introduced by decomposition of a context into sequents,
made it possible to simplify the sequent calculus Seqpo; of [8] into a new
calculus Squc ,» which has fewer, and simpler reasoning rules. Because it is
based on intermediate transformation to Kleene logic, it is closely related to
the transformations that we have developed in this paper for theorem proving.
Because of this, we included a description of Sequc ;. in this paper.

In the near future, we will extend Geo ([10]), which currently uses untyped
classical logic, to PCL. It follows from Theorem 2.14 that the same theorem
proving procedure can be used for checking type conditions and for proving
theorems. In practice, it will probably be necessary to use different settings.
Type correctness proofs usually do not require equality reasoning, and reason
on subformulas of a given goal only. We plan to study adaptions of the general
procedure, that may be more effective.
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We have chosen geometric logic as a starting point for theorem proving in
PCL, because we expect that it is well-suited to problems where type conditions
mix with other predicates, and that it will have good termination behaviour in
case when a goal is not provable. These were the original reasons why geo-
metric logic with flattening was introduced in [9]. In CASC 2007 ([20], [19]),
Geo came second in the model finding category. Nevertheless, it is likely that
superposition-based strategies can be used as well. In order to test this, the
superposition calculus of [1] has to be adopted to Kleene logic.
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